Advertisements
Advertisements
Question
The cross section of a piece of metal 2 m in length is shown. Calculate the area of cross section.
Solution
Divide the figure into 1 rectangle and 1 triangle.
Dimensions of the rectangle:
length = 8cm
breadth = 6cm
Area of rectangle
= length x breadth
= 8 x 6
= 48cm2 ...(1)
Dimensions of the triangle:
base
= 12 - 6
= 6cm
height
= 8 - 5
= 3cm
Area of a triangle
= `(1)/(2) xx "b" xx "h"`
= `(1)/(2) xx 6 xx 3`
= 9cm2 ...(2)
Area of the cross section
= 48 + 9
= 57cm2
∴ Area of the cross section is 57cm2.
APPEARS IN
RELATED QUESTIONS
A swimming pool is 40 m long and 15 m wide. Its shallow and deep ends are 1.5 m and 3 m deep respectively. If the bottom of the pool slopes uniformly, find the amount of water in liters required to fill the pool.
The following figure shows a closed victory-stand whose dimensions are given in cm.
Find the volume and the surface area of the victory stand.
The cross-section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the following figure; also given that:
AM = BN; AB = 7 m; CD = 5 m. The height of the tunnel is 2.4 m. The tunnel is 40 m long. Calculate:
(i) The cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2 (sq. meter).
(ii) The cost of paving the floor at the rate of Rs. 18 per m2.
Find the length of 22 kg copper wire of diameter 0.8 cm, if the weight of 1 cm3 copper is 4.2 g.
A swimming pool is 50 m long and 15 m wide. Its shallow and deep ends are 1.5 m and 4.5 m respectively. If the bottom of the pool slopes uniformly, find the amount of water in kilolitres required to fill the pool (1 m3 = 1000 liters).
The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. Calculate the cross sectional area
The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. If the whole wall is to be painted, find the cost of painting it at 2.50 per sq m.
ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
Calculate the total volume content of the shed.
The cross section of a swimming pool is a trapezium whose shallow and deep ends are 1 m and 3 m respectively. If the length of the pool is 50 m and its width is 1.5 m, calculate the volume of water it holds.
The cross section of a canal is a trapezium with the base length of 3 m and the top length of 5 m. It is 2 m deep and 400 m long. Calculate the volume of water it holds.