English

The Diagonals Ac and Bc of a Quadrilateral Abcd Intersect at O. Prove that If Bo = Od, Then Areas of δAbc an δAdc Area Equal. - Mathematics

Advertisements
Advertisements

Question

The diagonals AC and BC of a quadrilateral ABCD intersect at O. Prove that if BO = OD, then areas of ΔABC an ΔADC area equal.

Sum

Solution


In ΔABD,
BO = OD
⇒ O is the mid-point of BD
⇒ AO is a median.
⇒ ar(ΔAOB) = ar(ΔAOD)         ..........(i)
In ΔCBD, O is the mid-point of BD
⇒ CO is a median.
⇒ ar(ΔCOB) = ar(ΔCOD)         ..........(ii)
Adding (i) and (ii)
ar(ΔAOB) 6 ar(ΔCOB) = ar(ΔAOD) + ar(ΔCOD)
Therefore, ar(ΔABC) = ar(ΔADC).

shaalaa.com
Diagonal Properties of Different Kinds of Parallelograms
  Is there an error in this question or solution?
Chapter 21: Areas Theorems on Parallelograms - Exercise 21.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 21 Areas Theorems on Parallelograms
Exercise 21.1 | Q 20
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×