English

The Diagram 10 Shows Two Coils X and Y. the Coil X is Connected to a Battery S and a Key K. the Coil Y is Connected to a Galvanometer G. - Physics

Advertisements
Advertisements

Question

The diagram 10 shows two coils X and Y. The coil X is connected to a battery S and a key K. The coil Y is connected to a galvanometer G.

When the key K is closed. State the polarity
(i)At the end of the coil X,
(ii)At the end C of the coil Y,
(iii)At the end C of the coil Y if the coil Y is (a) Moved towards the coil X, (b) Moved away from the coil X.

Short Note

Solution

(i) Current at the end B of the coil X is anticlockwise therefore at this end there is north pole.
(ii) While closing the key, polarity at the end C of the coil Y will be north. There will be no polarity at the end C of the coil Y when the current becomes steady in the coil X.
(iii) (a) While the coil Y is moved towards the coil X, the polarity at the end C of the coil Y is north.
(b) While the coil Y is moved away the coil X, the polarity at the end C of the coil Y is south.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Current Electricity - Exercise 5 [Page 213]

APPEARS IN

Frank Physics - Part 2 [English] Class 10 ICSE
Chapter 4 Current Electricity
Exercise 5 | Q 15 | Page 213

RELATED QUESTIONS

The phenomenon of electromagnetic induction is


The magnetic flux through a loop is varying according to a relation `phi = 6t^2 + 7t + 1` where `phi` is in milliweber and t is in second. What is the e.m.f. induced in the loop at t = 2 second?


The most suitable material for making the core of an electromagnet is:

(a) soft iron
(b) brass
(c) aluminium
(d) steel


The switches in figure (a) and (b) are closed at t = 0 and reopened after a long time at t = t0.

(a) The charge on C just after t = 0 is εC.
(b) The charge on C long after t = 0 is εC.
(c) The current in L just before t = t0 is ε/R.
(d) The current in L long after t = t0 is ε/R.


Figure shows a wire sliding on two parallel, conducting rails placed at a separation l. A magnetic field B exists in a direction perpendicular to the plane of the rails. What force is necessary to keep the wire moving at a constant velocity v?


Figure shows a long U-shaped wire of width l placed in a perpendicular magnetic field B. A wire of length l is slid on the U-shaped wire with a constant velocity v towards right. The resistance of all the wires is r per unit length. At t = 0, the sliding wire is close to the left edge of the U-shaped wire. (a) Calculate the force needed to keep the sliding wire moving with a constant velocity v. (b) If the force needed just after t = 0 is F0, find the time at which the force needed will be F0/2.0


Why do you mean by turns ratio of a transformer? Can it work with D.C.?

Choose the correct option:

A conductor rod of length (l) is moving with velocity (v) in a direction normal to a uniform magnetic field (B). What will be the magnitude of induced emf produced between the ends of the moving conductor?


AB is a coil of copper wire having a large number of turns. The ends of the coil are connected with a galvanometer as shown. When the north pole of a strong bar magnet is moved towards end B of the coil, a deflection is observed in the galvanometer.

  1. State the reason for using galvanometer in the activity and why does its needle deflects momentarily when magnet is moved towards the coil.
  2. What would be observed in the galvanometer in a situation when the coil and the bar magnet both move with the same speed in the same direction? Justify your answer.
  3. State the conclusion that can be drawn from this activity.
    Will there be any change in the momentary deflection in the galvanometer if number of turns in the coil is increased and a more stronger magnet is moved towards the coil?

OR

What is electromagnetic induction? What is observed in the galvanometer when a strong bar magnet is held stationary near one end of a coil of large number of turns? Justify your answer.


An expression for oscillating electric field in a plane electromagnetic wave is given as Ez = 300 sin(5π × 103x - 3π × 1011t)Vm-1 Then, the value of magnetic field amplitude will be ______. (Given: speed of light in Vacuum c = 3 × 108 ms-1)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×