English

The Magnetic Flux Through a Loop is Varying According to a Relation Phi = 6t^2 + 7t + 1.Where `Phi` Is In Milliweber and T is in Second. What is the E.M.F. Induced in the Loop at T = 2 Second? - Physics

Advertisements
Advertisements

Question

The magnetic flux through a loop is varying according to a relation `phi = 6t^2 + 7t + 1` where `phi` is in milliweber and t is in second. What is the e.m.f. induced in the loop at t = 2 second?

Solution

Given : `phi = 6t^2 + 7t + 1`  (in milliweber),t=2s

find: Magnitude of induced e.m.f. (e)

formula:  `e=(dphi)/dt` (in magnitude)

Calculation: Using formula

`e=d/dt(6t^2+7t+1)`

`=12t+7`

At t=2s

`|e|=12 xx 2 + 7`

`=31mV=31xx10^-3V`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Electric field intensity in free space at a distance ‘r’ outside the charged conducting sphere of radius ‘R’ in terms of surface charge density ‘ a ’ is............................

(a)`sigma / in_0[R/r]^2`

(b)`in_0/sigma[R/r]^2`

(c)`R/r[sigma/in_0]^2`

(d)`R/sigma[r/in_0]^2`

 


Explain different ways to induce current in a coil.


A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is 1 cm s−1 in a direction normal to the

  1. longer side,
  2. shorter side of the loop? 

For how long does the induced voltage last in each case?


It is desired to measure the magnitude of field between the poles of a powerful loud speaker magnet. A small flat search coil of area 2 cm2 with 25 closely wound turns, is positioned normal to the field direction, and then quickly snatched out of the field region. Equivalently, one can give it a quick 90° turn to bring its plane parallel to the field direction. The total charge flown in the coil (measured by a ballistic galvanometer connected to coil) is 7.5 mC. The combined resistance of the coil and the galvanometer is 0.50 Ω. Estimate the field strength of magnet.


What is electromagnetic induction?


If ‘R’ is the radius of dees and ‘B’ be the magnetic field of induction in which positive charges (q) of mass (m) escape from the cyclotron, then its maximum speed (vmax) is _______.

A) `(qR)/(Bm)`

B)`(qm)/(Br)`

C) `(qBR)/m`

D) `m/(qBR)`


State three ways in which the strength of an electromagnet can be increased.


 Explain why, an electromagnet is called a temporary magnet.


What condition is necessary for the production of current by electromagnetic induction?


When current is 'switched on' and 'switched off' in a coil, a current is induced in another coil kept near it. What is this phenomenon known as?


 What do you understand by the term "electromagnetic induction"? Explain with the help of a diagram. 


 Name one device which works on the phenomenon of electromagnetic induction. 


When the magnet shown in the diagram below is moving towards the coil, the galvanometer gives a reading to the right. 

 

() What is the name of the effect being produced by the moving magnet?
(2) State what happens to the reading shown on the galvanometer when the magnet is moving away from the coil.
(3) The original experiment is repeated. This time the magnet is moved towards the coil at a great speed. State two changes you would notice in the reading on the galvanometer.


Describe one experiment to demonstrate the phenomenon of electromagnetic induction.


In which of the following case does the electromagnetic induction occur?

A loop of wire is held near a magnet.


Welders wear special glass goggles while working. Why? Explain.


The coil of a moving-coil galvanometer keeps on oscillating for a long time if it is deflected and released. If the ends of the coil are connected together, the oscillation stops at once. Explain.


A conducting rod is moved with a constant velocity v in a magnetic field. A potential difference appears across the two ends _____________ .


The switches in figure (a) and (b) are closed at t = 0 and reopened after a long time at t = t0.

(a) The charge on C just after t = 0 is εC.
(b) The charge on C long after t = 0 is εC.
(c) The current in L just before t = t0 is ε/R.
(d) The current in L long after t = t0 is ε/R.


Calculate the dimensions of (a) \[\int \overrightarrow{E} . d \overrightarrow{l,}\] (b) vBl and (c) \[\frac{d \Phi_B}{dt}.\] The symbols have their usual meaning.


Figure shows a long U-shaped wire of width l placed in a perpendicular magnetic field B. A wire of length l is slid on the U-shaped wire with a constant velocity v towards right. The resistance of all the wires is r per unit length. At t = 0, the sliding wire is close to the left edge of the U-shaped wire. (a) Calculate the force needed to keep the sliding wire moving with a constant velocity v. (b) If the force needed just after t = 0 is F0, find the time at which the force needed will be F0/2.0


 Can a transformer work when it is connected to a D.C. source? Give a reason.


The diagram 10 shows two coils X and Y. The coil X is connected to a battery S and a key K. The coil Y is connected to a galvanometer G.

When the key K is closed. State the polarity
(i)At the end of the coil X,
(ii)At the end C of the coil Y,
(iii)At the end C of the coil Y if the coil Y is (a) Moved towards the coil X, (b) Moved away from the coil X.


The following diagram shows a fixed coil of several turns connected to a center zero galvanometer G and a magnet NS which can move in the direction shown in the diagram.

  1. Describe the observation in the galvanometer if
    1. The magnet is moved rapidly,
    2. The magnet is kept still after it has moved into the coil
    3. The magnet is then rapidly pulled out the coil.
  2. How would the observation in (i) of part (a) change if a more powerful magnet is used?


Fig. shows a simple form of an A.C. generator.

(a) Name the parts labeled A and B.
(b) What would be the effect of doubling the number of turns on the coil if the speed of rotation remains unchanged?
(c) Which of the output terminals is positive if the coil is rotating in the
direction shown in the diagram (anticlockwise)?
( d ) What is the position of the rotating coil when p.d. across its ends is zero? Explain why p.d. is zero when the coil is at this position .
(e) Sketch a graph showing how the p.d. across the ends of the rotating coil varies with time for an A.C. dynamo.
( f) On th e same sheet of paper and vertically below the first graph using the same time scale, sketch graphs to show the effect of
(i) Doubling the speed of rotation and at the same time keeping
the field and the number of turns constant,
(ii ) Doubling the number of turns on the coil and at the same time
doubling the speed of rotation of the coil, keeping th e speed
constant.


Answer the following:

State the principles of the electric motor and electric generator. 


State the purpose of soft iron core used in making an electromagnet.


What is an electromagnet? What do you know about the simplest form of an electromagnet?


The diagram shows a rectangular coil ABCD, suspended freely between the concave pole pieces of a permanent horseshoe magnet, such that the plane of the coil is parallel to the magnetic field.

(i) State your observation, when current is switched on.
(ii) Give an explanation for your observation in (i).
(iii) State the rule, which will help you to find the motion of rotation of coil.
(iv) In which position will the coil ultimately come to rest?
(v) State four ways of increasing the magnitude of force acting on the coil.


State the condition at which we say the two coils kept close to each other are perfectly coupled with each other. 


Fleming's left hand rule : electric current : : Fleming's right hand rule : _______


Write the two names in the following diagram.

Right hand thumb rule.


A thin semi-circular conducting ring (PQR) of radius r is falling with its plane vertical in a horizontal magnetic field B, as shown in the figure.

The potential difference developed across the ring when its speed v , is


State Lenz’s law.


State Fleming’s right-hand rule.


Establish the fact that the relative motion between the coil and the magnet induces an emf in the coil of a closed circuit.


Give an illustration of determining direction of induced current by using Lenz’s law.


Show that Lenz’s law is in accordance with the law of conservation of energy.


Obtain an expression for motional emf from Lorentz force.


A straight metal wire crosses a magnetic field of flux 4 mWb in a time 0.4 s. Find the magnitude of the emf induced in the wire.


Using Lenz’s law, predict the direction of induced current in conducting rings 1 and 2 when the current in the wire is steadily decreasing.


A generator has an e.m.f. of 440 Volt and internal resistance of 4000 hm. Its terminals are connected to a load of 4000 ohm. The voltage across the load is ______.


In electromagnetic induction, the induced charge is independent of ______.

The instrument that use to defect electric current in the circuit is known as ____________.


What should be the core of an electromagnet?


Ansari Sir was demonstrating an experiment in his class with the setup as shown in the figure below.

A magnet is attached to a spring. The magnet can go in and out of the stationary coil. He lifted the Magnet and released it to make it oscillate through the coil.
Based on your understanding of the phenomenon, answer the following question.

What is the principle which Ansari Sir is trying to demonstrate?


Ansari Sir was demonstrating an experiment in his class with the setup as shown in the figure below.

A magnet is attached to a spring. The magnet can go in and out of the stationary coil. He lifted the Magnet and released it to make it oscillate through the coil.
Based on your understanding of the phenomenon, answer the following question.

What will be observed when the Magnet starts oscillating through the coil. Explain the reason behind this observation.


Name some equipment that uses electromagnetism for functioning.


Induced current flows through a coil ______.


Which of the following instruments works by electromagnetic induction?


For making a strong electromagnet the material of the core should be ______.


A rectangular, a square, a circular and an elliptical loop, all in the (x - y) plane, are moving out of a uniform magnetic field with a constant velocity `vecv = vhati`. The magnetic field is directed along the negative z-axis direction. The induced emf, during the passage of these loops, out of the field region, will not remain constant for ______.


AB is a coil of copper wire having a large number of turns. The ends of the coil are connected with a galvanometer as shown. When the north pole of a strong bar magnet is moved towards end B of the coil, a deflection is observed in the galvanometer.

  1. State the reason for using galvanometer in the activity and why does its needle deflects momentarily when magnet is moved towards the coil.
  2. What would be observed in the galvanometer in a situation when the coil and the bar magnet both move with the same speed in the same direction? Justify your answer.
  3. State the conclusion that can be drawn from this activity.
    Will there be any change in the momentary deflection in the galvanometer if number of turns in the coil is increased and a more stronger magnet is moved towards the coil?

OR

What is electromagnetic induction? What is observed in the galvanometer when a strong bar magnet is held stationary near one end of a coil of large number of turns? Justify your answer.


A current I = 10 sin(100π t) A is passed in first coil, which induces a maximum e.m.f of 5π volt in second coil. The mutual inductance between the coils is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×