Advertisements
Advertisements
Question
The mean of first n odd natural number is
Options
\[\frac{n + 1}{2}\]
\[\frac{n}{2}\]
n
`n^2`
Solution
The first n odd natural numbers are 1, 3, 5, ... , (2n − 1).
∴ Mean of first n odd natural numbers
\[= \frac{1 + 3 + 5 + . . . + \left( 2n - 1 \right)}{n}\]
\[ = \frac{\frac{n}{2}\left( 1 + 2n - 1 \right)}{n} \left[ S_n = \frac{n}{2}\left( a + l \right) \right]\]
\[ = \frac{2n}{2}\]
\[ = n\]
APPEARS IN
RELATED QUESTIONS
Thirty women were examined in a hospital by a doctor and the number of heartbeats per minute were recorded and summarized as follows. Fine the mean heartbeats per minute for these women, choosing a suitable method.
Number of heartbeats per minute | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83 | 83 - 86 |
Number of women | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
If the mean of the following data is 20.6. Find the value of p.
x | 10 | 15 | P | 25 | 35 |
f | 3 | 10 | 25 | 7 | 5 |
The arithmetic mean of the following data is 25, find the value of k.
x1 | 5 | 15 | 25 | 35 | 45 |
f1 | 3 | k | 3 | 6 | 2 |
For the following distribution, calculate mean using all suitable methods:
Size of item | 1 - 4 | 4 - 9 | 9 - 16 | 16 - 27 |
Frequency | 6 | 12 | 26 | 20 |
Find the mean of the following data, using assumed-mean method:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 - 120 |
Frequency | 20 | 35 | 52 | 44 | 38 | 31 |
Weight of 60 eggs were recorded as given below:
Weight (in grams) | 75 – 79 | 80 – 84 | 85 – 89 | 90 – 94 | 95 – 99 | 100 - 104 | 105 - 109 |
No. of eggs | 4 | 9 | 13 | 17 | 12 | 3 | 2 |
Calculate their mean weight to the nearest gram.
The mean of first n odd natural numbers is \[\frac{n^2}{81}\],then n =
The distances covered by 250 public transport buses in a day is shown in the following frequency distribution table. Find the median of the distance.
Distance (km)
|
200 - 210 | 210 - 220 | 220 - 230 | 230 - 240 | 240 - 250 |
No. of buses | 40 | 60 | 80 | 50 | 20 |
If xi’s are the midpoints of the class intervals of grouped data, fi’s are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i - barx)` is equal to ______.
Is it true to say that the mean, mode and median of grouped data will always be different? Justify your answer