English
Karnataka Board PUCPUC Science Class 11

The Phenomenon of Beats Can Take Place - Physics

Advertisements
Advertisements

Question

The phenomenon of beats can take place

Options

  • for longitudinal waves only

  •  transverse waves only

  • for both longitudinal and transverse waves

  • for sound waves only

MCQ

Solution

for both longitudinal and transverse waves

When two or more waves of slightly different frequencies (v1 – v2 ≯ 10) travel with the same speed in the same direction, they superimpose to give beats. Thus, the waves may be longitudinal or transverse.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Sound Waves - MCQ [Page 352]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 16 Sound Waves
MCQ | Q 12 | Page 352

RELATED QUESTIONS

When a transverse wave on a string is reflected from the free end, the phase change produced is ..............

(a) zero rad

(b) ` pi/2 ` rad

(c) `(3pi)/4` rad

(d) `pi`  rad


A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end?


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36 t + 0.018 x + π/4) 

Where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave?

If it is travelling, what are the speed and direction of its propagation?

(b) What are its amplitude and frequency?

(c) What is the initial phase at the origin?

(d) What is the least distance between two successive crests in the wave?


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = cos x sin t + cos 2x sin 2t


Explain why (or how) The shape of a pulse gets distorted during propagation in a dispersive medium.


A mechanical wave propagates in a medium along the X-axis. The particles of the medium
(a) must move on the X-axis
(b) must move on the Y-axis
(c) may move on the X-axis
(d) may move on the Y-axis.


A transverse wave travels along the Z-axis. The particles of the medium must move


Longitudinal waves cannot


Mark out the correct options.


A steel wire of length 64 cm weighs 5 g. If it is stretched by a force of 8 N, what would be the speed of a transverse wave passing on it?


Two blocks each having a mass of 3⋅2 kg are connected by a wire CD and the system is suspended from the ceiling by another wire AB (See following figure). The linear mass density of the wire AB is 10 g m−1 and that of CD is 8 g m−1. Find the speed of a transverse wave pulse produced in AB and CD.


An organ pipe, open at both ends, contains


A transverse wave of amplitude 0⋅50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N. If the wave speed is 100 m s−1, what average power is the source transmitting to the wire?


A tuning fork of frequency 440 Hz is attached to a long string of linear mass density 0⋅01 kg m−1 kept under a tension of 49 N. The fork produces transverse waves of amplitude 0⋅50 mm on the string. (a) Find the wave speed and the wavelength of the waves. (b) Find the maximum speed and acceleration of a particle of the string. (c) At what average rate is the tuning fork transmitting energy to the string?


If the speed of a transverse wave on a stretched string of length 1 m is 60 m−1, what is the fundamental frequency of vibration?


Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies? (c) Which overtones are these frequencies? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string?


The equation of a standing wave, produced on a string fixed at both ends, is
\[y = \left( 0 \cdot 4  cm \right)  \sin  \left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
What could be the smallest length of the string?


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 2 cos (3x) sin (10t)


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

`"y" = 2sqrt(x - "vt")`


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×