Advertisements
Advertisements
Question
The scores (out of 100) obtained by 33 students in a mathematics test are as follows:
69, 48, 84, 58, 48, 73, 83, 48, 66, 58, 84, 66, 64, 71, 64, 66, 69, 66, 83, 66, 69, 71, 81, 71, 73, 69, 66, 66, 64, 58, 64, 69, 69
Represent this data in the form of a frequency distribution.
Solution
The number of students who have the same marks in mathematics is called the frequency of that mark.
A frequency distribution table for the given data is given below:
Scores | Tally marks | Frequency |
48 | `bb|bb|bb|` | 3 |
58 | `bb|bb|bb|` | 3 |
64 | `bb|bb|bb|bb|` | 4 |
66 | `\cancel(bb|bb|bb|bb|) bb|bb|` | 7 |
69 | `\cancel(bb|bb|bb|bb|) bb|` | 6 |
71 | `bb|bb|bb|` | 3 |
73 | `bb|bb|` | 2 |
81 | `bb|` | 1 |
83 | `bb|bb|` | 2 |
84 | `bb|bb|` | 2 |
Total | 33 |
APPEARS IN
RELATED QUESTIONS
The distance (in km) of 40 engineers from their residence to their place of work were found as follows:-
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Construct a grouped frequency distribution table with class size 5 for the data given above taking the first interval as 0-5 (5 not included). What main features do you observe from this tabular representation?
Three coins were tossed 30 times simultaneously. Each time the number of heads occurring was noted down as follows:-
0 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 0 |
1 | 3 | 1 | 1 | 2 | 2 | 0 | 1 | 2 | 1 |
3 | 0 | 0 | 1 | 1 | 2 | 3 | 2 | 2 | 0 |
Prepare a frequency distribution table for the data given above.
A company manufactures car batteries of a particular type. The lives (in years) of 40 such batteries were recorded as follows:-
2.6 | 3.0 | 3.7 | 3.2 | 2.2 | 4.1 | 3.5 | 4.5 |
3.5 | 2.3 | 3.2 | 3.4 | 3.8 | 3.2 | 4.6 | 3.7 |
2.5 | 4.4 | 3.4 | 3.3 | 2.9 | 3.0 | 4.3 | 2.8 |
3.5 | 3.2 | 3.9 | 3.2 | 3.2 | 3.1 | 3.7 | 3.4 |
4.6 | 3.8 | 3.2 | 2.6 | 3.5 | 4.2 | 2.9 | 3.6 |
Construct a grouped frequency distribution table for this data, using class intervals of size 0.5 starting from the intervals 2 − 2.5.
Given below are the cumulative frequencies showing the weights of 685 students of a school. Prepare a frequency distribution table.
Weight (in kg) | No. of students |
Below 25 | 0 |
Below 30 | 24 |
Below 35 | 78 |
Below 40 | 183 |
Below 45 | 294 |
Below 50 | 408 |
Below 55 | 543 |
Below 60 | 621 |
Below 65 | 674 |
Below 70 | 685 |
In the class intervals 10-20, 20-30, 20 is taken in
The following marks were obtained by the students in a test:
81, 72, 90, 90, 86, 85, 92, 70, 71, 83, 89, 95, 85, 79, 62
The range of the marks is
The width of each of five continuous classes in a frequency distribution is 5 and the lower class-limit of the lowest class is 10. The upper class-limit of the highest class is ______.
For drawing a frequency polygon of a continous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abcissae are respectively ______.
Convert the given frequency distribution into a continuous grouped frequency distribution:
Class interval | Frequency |
150 – 153 | 7 |
154 – 157 | 7 |
158 – 161 | 15 |
162 – 165 | 10 |
166 – 169 | 5 |
170 – 173 | 6 |
In which intervals would 153.5 and 157.5 be included?
The following are the marks (out of 100) of 60 students in mathematics.
16, 13, 5, 80, 86, 7, 51, 48, 24, 56, 70, 19, 61, 17, 16, 36, 34, 42, 34, 35, 72, 55, 75, 31, 52, 28, 72, 97, 74, 45, 62, 68, 86, 35, 85, 36, 81, 75, 55, 26, 95, 31, 7, 78, 92, 62, 52, 56, 15, 63, 25, 36, 54, 44, 47, 27, 72, 17, 4, 30.
Construct a grouped frequency distribution table with width 10 of each class, in such a way that one of the classes is 10 – 20 (20 not included).