Advertisements
Advertisements
Question
The sum of first n terms of an A.P. is 3n2 + 4n. Find the 25th term of this A.P.
Solution
We know
\[a_n = S_n - S_{n - 1} \]
\[ \therefore a_n = 3 n^2 + 4n - 3 \left( n - 1 \right)^2 - 4\left( n - 1 \right)\]
\[ \Rightarrow a_n = 6n + 1\]
APPEARS IN
RELATED QUESTIONS
In an A.P., the sum of first n terms is `(3n^2)/2 + 13/2 n`. Find its 25th term.
Which term of the AP `20, 19 1/4 , 18 1/2 , 17 3/4 ` ,..... is the first negative term?
The first three terms of an AP are respectively (3y – 1), (3y + 5) and (5y + 1), find the value of y .
If the sum of first p terms of an A.P. is equal to the sum of first q terms then show that the sum of its first (p + q) terms is zero. (p ≠ q)
The sum of the first n terms of an A.P. is 3n2 + 6n. Find the nth term of this A.P.
Sum of n terms of the series `sqrt2+sqrt8+sqrt18+sqrt32+....` is ______.
The sum of n terms of two A.P.'s are in the ratio 5n + 9 : 9n + 6. Then, the ratio of their 18th term is
A manufacturer of TV sets produces 600 units in the third year and 700 units in the 7th year. Assuming that the production increases uniformly by a fixed number every year, find:
- the production in the first year.
- the production in the 10th year.
- the total production in 7 years.
Q.17
The ratio of the 11th term to the 18th term of an AP is 2 : 3. Find the ratio of the 5th term to the 21st term, and also the ratio of the sum of the first five terms to the sum of the first 21 terms.