Advertisements
Advertisements
Question
The surface area of a solid metallic sphere is 2464 cm2. It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm. Calculate:
- the radius of the sphere.
- the number of cones recast. (Take π = `22/7`)
Solution
i. Total surface area of the sphere = 4πr2, where r is the radius of the sphere.
Thus,
4πr2 = 2464 cm2
`=> 4 xx 22/7 xx r^2 = 2464`
`=>` r2 = 196
`=>` r = 14 cm
∴ R = 14 cm
ii. Volume of sphere melted = `4/3 piR^3`
= `4/3 xx pi xx 14 xx 14 xx 14`
Radius of each cone recasted = r = 3.5 cm
Height of each cone recasted = h = 7 cm
∴ Volume of each cone recasted = `1/3 pir^2h`
= `1/3 xx pi xx 3.5 xx 3.5 xx 7`
∴ Number of cones recasted
= `"Volume of sphere melted"/"Volume of each cone formed"`
= `(4/3 xx pi xx 14 xx 14 xx 14)/(1/3 xx pi xx 3.5 xx 3.5 xx 7)`
= `(4 xx 14 xx 14 xx 14)/(3.5 xx 3.5 xx 7)`
= 4 × 4 × 4 × 2
= 128
APPEARS IN
RELATED QUESTIONS
Find the surface area of a sphere of diameter 14 cm.
`["Assume "pi=22/7]`
Find the radius of a sphere whose surface area is 154 cm2.
`["Assume "pi=22/7]`
The diameter of the moon is approximately one-fourth of the diameter of the earth. Find the ratio of their surface area.
A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm. Find the number of cones.
A model of a ship is made to a scale 1: 300
1) The length of the model of the ship is 2 m. Calculate the lengths of the ship.
2) The area of the deck ship is 180,000 m2. Calculate the area of the deck of the model.
3) The volume of the model in 6.5 m3. Calculate the volume of the ship.
A solid cone of radius 5 cm and height 8 cm is melted and made into small spheres of radius 0.5 cm. Find the number of spheres formed.
The surface area of a solid sphere is increased by 12% without changing its shape. Find the percentage increase in its:
- radius
- volume
A hollow sphere of internal and external diameter 4 cm and 8 cm respectively is melted into a cone of base diameter 8 cm. Find the height of the cone.
What is the least number of solid metallic spheres, each of 6 cm diameter, that should be melted and recast to form a solid metal cone whose height is 45 cm and diameter 12 cm?
The hollow sphere, in which the circus motor cyclist performs his stunts, has a diameter of 7 m. Find the area available to the motorcyclist for riding.
If a hollow sphere of internal and external diameters 4 cm and 8 cm respectively melted into a cone of base diameter 8 cm, then find the height of the cone.
If a solid sphere of radius r is melted and cast into the shape of a solid cone of height r, then the radius of the base of the cone is
A cone, a hemisphere and a cylinder stand on equal bases and have the same height. The ratio of their volumes is
The model of a building is constructed with the scale factor 1 : 30.
(i) If the height of the model is 80 cm, find the actual height of the building in meters.
(ii) If the actual volume of a tank at the top of the building is 27m3, find the volume of the tank on the top of the model.
Find the surface area and volume of sphere of the following radius. (π = 3.14 )
9 cm
The radius of a sphere is 9 cm. It is melted and drawn into a wire of diameter 2 mm. Find the length of the wire in metre.
Find the length of the wire of diameter 4 m that can be drawn from a solid sphere of radius 9 m.
From a rectangular solid of metal 42 cm by 30 cm by 20 cm, a conical cavity of diameter 14 cm and depth 24 cm is drilled out. Find: the weight of the material drilled out if it weighs 7 gm per cm3.
There is surface area and volume of a sphere equal, find the radius of sphere.
A vessel is in he form of an inverted cone. Its height is 11 cm., and the radius of its top which is open is 2.5 cm. It is filled with water up to the rim. When lead shots, each of which is a sphere of radius 0.25 cm., are dropped 2 into the vessel, `2/5`th of the water flows out. Find the number of lead shots dropped into the vessel.