English
Karnataka Board PUCPUC Science Class 11

The Thermal Energy Developed in a Current-carrying Resistor is Given by U = I2 Rt and Also by U = Vit. Should We Say that U is Proportional to I2 Or I? - Physics

Advertisements
Advertisements

Question

The thermal energy developed in a current-carrying resistor is given by U = i2 Rt and also by U = Vit. Should we say that U is proportional to i2 or i?

Short Note

Solution

In the expression U = Vit, voltage V and current i are variables for a given time interval. So, based on this expression we cannot say that U is proportional to i. In the expression U = i2Rt, the resistance R is fixed for a circuit for a given time interval. So, based on this expression, we can say that U is proportional to i2 and not i.

shaalaa.com
Temperature Dependence of Resistance
  Is there an error in this question or solution?
Chapter 10: Electric Current in Conductors - Short Answers [Page 196]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 10 Electric Current in Conductors
Short Answers | Q 9 | Page 196

RELATED QUESTIONS

A heating element using nichrome connected to a 230 V supply draws an initial current of 3.2 A which settles after a few seconds to a steady value of 2.8 A. What is the steady temperature of the heating element if the room temperature is 27.0°C? The temperature coefficient of resistance of nichrome averaged over the temperature range involved is 1.70 × 10−4 °C−1.


Show variation of resistivity of Si with temperature in a graph ?


Consider a circuit containing an ideal battery connected to a resistor. Do "work done by the battery" and "the thermal energy developed" represent two names of the same physical quantity?


Is work done by a battery always equal to the thermal energy developed in electrical circuit? What happens if a capacitor is connected in the circuit?


Sometimes it is said that "heat is developed" in a resistance when there is an electric current in it. Recall that heat is defined as the energy being transferred due to temperature difference. Is the statement in quotes technically correct?


Is inversion temperature always double the neutral temperature? Does the unit of temperature have an effect in deciding this question?


Is neutral temperature always the arithmetic mean of the inversion temperature and the temperature of the cold junction? Does the unit of temperature have an effect in deciding this question?


As temperature increases, the viscosity of liquids decreases considerably. Will this decrease the resistance of an electrolyte as the temperature increases?


The constants a and b for the pair silver-lead are 2.50 μV°C−1 and 0.012μV°C−2, respectively. For a silver-lead thermocouple with colder junction at 0°C, ______________ .

(a) there will be no neutral temperature
(b) there will be no inversion temperature
(c) there will not be any thermo-emf even if the junctions are kept at different temperatures
(d) there will be no current in the thermocouple even if the junctions are kept at different temperatures


The 2.0 Ω resistor shown in the figure is dipped into a calorimeter containing water. The heat capacity of the calorimeter together with water is 2000 J K−1. (a) If the circuit is active for 15 minutes, what would be the rise in the temperature of the water? (b) Suppose the 6.0 Ω resistor gets burnt. What would be the rise in the temperature of the water in the next 15 minutes?


Find the thermo-emf developed in a copper-silver thermocouple when the junctions are kept at 0°C and 40°C. Use the data given in the following table.

Metal with lead (Pb)

a

`mu V"/"^oC`

b

`muV"/("^oC)`

Aluminium -0.47 0.003
Bismuth -43.7 -0.47
Copper 2.76 0.012
Gold 2.90 0.0093
Iron 16.6 -0.030
Nickel 19.1 -0.030
Platinum -1.79 -0.035
Silver 2.50 0.012
Steel 10.8 -0.016

Find the neutral temperature and inversion temperature of a copper-iron thermocouple if the reference junction is kept at 0°C. Use the data given in the following table.

Metal with lead (Pb)

a

`mu V"/"^oC`

b

`muV"/("^oC)`

Aluminium -0.47 0.003
Bismuth -43.7 -0.47
Copper 2.76 0.012
Gold 2.90 0.0093
Iron 16.6 -0.030
Nickel 19.1 -0.030
Platinum -1.79 -0.035
Silver 2.50 0.012
Steel 10.8 -0.016

A carbon resistor has coloured bands as shown in Figure 2 below. The resistance of the resistor is: 

figure 2


A metallic wire has a resistance of 3.0 Ω at 0°C and 4.8 Ω at 150°C. Find the temperature coefficient of resistance of its material.


An electrical cable of copper has just one wire of radius 9 mm. Its resistance is 5 ohm. This single copper wire of the cable is replaced by 6 different well insulated copper wires each of radius 3 mm. The total resistance of the cable will now be equal to ______.


In the absence of an electric field, the mean velocity of free electrons in a conductor at absolute temperature (T) is ______.

Appliances based on heating effect of current work on ______.

By increasing the temperature, the specific resistance of a conductor and a semiconductor -


The higher and lower fixed points on a thermometer are separated by 160 mm. When the length of the mercury thread above the lower point is 40 mm, the temperature reading would be :


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×