Advertisements
Advertisements
Question
Three coins are tossed. Describe three events which are mutually exclusive but not exhaustive.
Solution
Three events that are mutually exclusive but not exhaustive can be
A: getting exactly three heads
B: getting one head and two tails
C: getting one tail and two heads
i.e.,
A = {HHH}
B = {HTT, THT, TTH}
C = {HHT, HTH, THH}
This is because A ∩ B = B ∩ C = C ∩ A = Φ, but A ∪ B ∪ C ≠ S
APPEARS IN
RELATED QUESTIONS
An experiment involves rolling a pair of dice and recording the numbers that come up. Describe the following events:
A: the sum is greater than 8, B: 2 occurs on either die
C: The sum is at least 7 and a multiple of 3.
Which pairs of these events are mutually exclusive?
Three coins are tossed. Describe two events which are mutually exclusive.
Three coins are tossed. Describe two events which are mutually exclusive but not exhaustive.
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5.
State true or false: (give reason for your answer).
A and B are mutually exclusive
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer).
A = B'
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A and B' are mutually exclusive
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A' , B' ,C are mutually exclusive and exhaustive.
Given P(A) = `3/5` and P(B) = `1/5`. Find P(A or B), if A and B are mutually exclusive events.
Three coins are tossed. Describe. three events A, B and C which are mutually exclusive and exhaustive.
Three coins are tossed. Describe. two events A and B which are not mutually exclusive.
Two dice are thrown. The events A, B, C, D, E and F are described as:
A = Getting an even number on the first die.
B = Getting an odd number on the first die.
C = Getting at most 5 as sum of the numbers on the two dice.
D = Getting the sum of the numbers on the dice greater than 5 but less than 10.
E = Getting at least 10 as the sum of the numbers on the dice.
F = Getting an odd number on one of the dice.
State true or false:
- A and B are mutually exclusive.
- A and B are mutually exclusive and exhaustive events.
- A and C are mutually exclusive events.
- C and D are mutually exclusive and exhaustive events.
- C, D and E are mutually exclusive and exhaustive events.
- A' and B' are mutually exclusive events.
- A, B, F are mutually exclusive and exhaustive events.
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P (A ∩\[\bar{ B } \] ).
From a well shuffled deck of 52 cards, 4 cards are drawn at random. What is the probability that all the drawn cards are of the same colour.
The probability that a person will travel by plane is 3/5 and that he will travel by trains is 1/4. What is the probability that he (she) will travel by plane or train?
A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ \[\bar{ B } \] )
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(\[\bar{ A } \] ∩ \[\bar{B} \] )
The probabilities of three mutually exclusive events A, B and C are given by 2/3, 1/4 and 1/6 respectively. The statement
If S is the sample space and P(A) = \[\frac{1}{3}\] P(B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =
If A, B, C are three mutually exclusive and exhaustive events of an experiment such that 3 P(A) = 2 P(B) = P(C), then P(A) is equal to
If A and B are mutually exclusive events then
An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:
P(A) = `9/120`, P(B) = `45/120`, P(C) = `27/120`, P(D) = `46/120`
If A, B, C are three mutually exclusive and exhaustive events of an experiment such that 3P(A) = 2P(B) = P(C), then P(A) is equal to ______.
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′)
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(B′)
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)
One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John. If A = {John promoted or Gurpreet promoted}, find P(A).
If A and B are mutually exclusive events, then ______.
Column A | Column B |
(a) If E1 and E2 are the two mutually exclusive events | (i) E1 ∩ E2 = E1 |
(b) If E1 and E2 are the mutually exclusive and exhaustive events | (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1 |
(c) If E1 and E2 have common outcomes, then | (iii) E1 ∩ E2 = Φ, E1 ∪ E2 = S |
(d) If E1 and E2 are two events such that E1 ⊂ E2 | (iv) E1 ∩ E2 = Φ |
Let E1, E2, E3 be three mutually exclusive events such that P(E1) = `(2 + 3p)/6`, P(E2) = `(2 - p)/8` and P(E3) = `(1 - p)/2`. If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to ______.