Advertisements
Advertisements
Question
One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John. If A = {John promoted or Gurpreet promoted}, find P(A).
Solution
Let E1, E2, E3 and E4 be the events that John promoted, Rita promoted, Aslam promoted and Gurpreet promoted respectively.
∴ Sample space S = {E1, E2, E3, E4}
Given that probability of John’s promotion is same as that of Gurpreet
∴ P(E1) = P(E4)
Rita’s chances of promotion are twice as likely as John
∴ P(E2) = 2P(E1)
And Aslam’s chances of promotion are 4 times that of John
∴ P(E3) = 4P(E1)
Since, the sum of all the probabilities = 1
∴ P(E1) + P(E2) + P(E3) + P(E4) = 1
⇒ P(E1) + 2P(E1) + 4P(E1) + P(E1) = 1
⇒ 8P(E1) = 1
⇒ P(E1) =
P(John promoted or Gurpreet promoted) = P(E1 ∪ E4)
⇒ P(E1 ∪ E4) = P(E1) + P(E4) – P(E1 ∩ E4)
=
=
APPEARS IN
RELATED QUESTIONS
An experiment involves rolling a pair of dice and recording the numbers that come up. Describe the following events:
A: the sum is greater than 8, B: 2 occurs on either die
C: The sum is at least 7 and a multiple of 3.
Which pairs of these events are mutually exclusive?
Three coins are tossed. Describe two events which are mutually exclusive but not exhaustive.
Three coins are tossed. Describe three events which are mutually exclusive but not exhaustive.
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A and B are mutually exclusive and exhaustive
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer).
A = B'
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A and C are mutually exclusive
Three coins are tossed. Describe. two events A and B which are not mutually exclusive.
Three coins are tossed. Describe.
(iv) two events A and B which are mutually exclusive but not exhaustive.
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are then put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the following events:
A = The number on the first slip is larger than the one on the second slip.
B = The number on the second slip is greater than 2
C = The sum of the numbers on the two slips is 6 or 7
D = The number on the second slips is twice that on the first slip.
Which pair(s) of events is (are) mutually exclusive?
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P (A ∪ B)
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P (
A box contains 10 white, 6 red and 10 black balls. A ball is drawn at random from the box. What is the probability that the ball drawn is either white or red?
The probability that a person will travel by plane is 3/5 and that he will travel by trains is 1/4. What is the probability that he (she) will travel by plane or train?
A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?
The probabilities of three mutually exclusive events A, B and C are given by 2/3, 1/4 and 1/6 respectively. The statement
If S is the sample space and P(A) =
An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:
P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = – 0.20
An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:
P(A) =
A die is loaded in such a way that each odd number is twice as likely to occur as each even number. Find P(G), where G is the event that a number greater than 3 occurs on a single roll of the die.
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B′)
Column A | Column B |
(a) If E1 and E2 are the two mutually exclusive events | (i) E1 ∩ E2 = E1 |
(b) If E1 and E2 are the mutually exclusive and exhaustive events | (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1 |
(c) If E1 and E2 have common outcomes, then | (iii) E1 ∩ E2 = Φ, E1 ∪ E2 = S |
(d) If E1 and E2 are two events such that E1 ⊂ E2 | (iv) E1 ∩ E2 = Φ |