Advertisements
Advertisements
Question
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
\[P (\bar{ A } \cap \bar{ B} )\]
Solution
Given:
P(A) = 0.4 and P(B) = 0.5
If A and B be mutually exclusive event, then P (A ∩ B) = 0
\[P\left( \bar{A} \cap B \right) = 1 - P\left( A \cup B \right)\]
= 1 - 0.9 = 0.1
APPEARS IN
RELATED QUESTIONS
A die is rolled. Let E be the event “die shows 4” and F be the event “die shows even number”. Are E and F mutually exclusive?
An experiment involves rolling a pair of dice and recording the numbers that come up. Describe the following events:
A: the sum is greater than 8, B: 2 occurs on either die
C: The sum is at least 7 and a multiple of 3.
Which pairs of these events are mutually exclusive?
Three coins are tossed. Describe two events which are mutually exclusive.
Three coins are tossed. Describe two events, which are not mutually exclusive.
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5.
State true or false: (give reason for your answer).
A and B are mutually exclusive
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer).
A = B'
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A and B' are mutually exclusive
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A' , B' ,C are mutually exclusive and exhaustive.
Events E and F are such that P(not E or not F) = 0.25, State whether E and F are mutually exclusive.
Three coins are tossed. Describe. two events A and B which are mutually exclusive.
Three coins are tossed. Describe. three events A, B and C which are mutually exclusive and exhaustive.
A die is thrown twice. Each time the number appearing on it is recorded. Describe the following events:
A = Both numbers are odd.
B = Both numbers are even.
C = sum of the numbers is less than 6
Also, find A ∪ B, A ∩ B, A ∪ C, A ∩ C
Which pairs of events are mutually exclusive?
Two dice are thrown. The events A, B, C, D, E and F are described as:
A = Getting an even number on the first die.
B = Getting an odd number on the first die.
C = Getting at most 5 as sum of the numbers on the two dice.
D = Getting the sum of the numbers on the dice greater than 5 but less than 10.
E = Getting at least 10 as the sum of the numbers on the dice.
F = Getting an odd number on one of the dice.
State true or false:
- A and B are mutually exclusive.
- A and B are mutually exclusive and exhaustive events.
- A and C are mutually exclusive events.
- C and D are mutually exclusive and exhaustive events.
- C, D and E are mutually exclusive and exhaustive events.
- A' and B' are mutually exclusive events.
- A, B, F are mutually exclusive and exhaustive events.
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are then put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the following events:
A = The number on the first slip is larger than the one on the second slip.
B = The number on the second slip is greater than 2
C = The sum of the numbers on the two slips is 6 or 7
D = The number on the second slips is twice that on the first slip.
Which pair(s) of events is (are) mutually exclusive?
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P ( \[\bar{ A} \] ∩ B)
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P (A ∩\[\bar{ B } \] ).
Given two mutually exclusive events A and B such that P(A) = 1/2 and P(B) = 1/3, find P(A or B).
A box contains 10 white, 6 red and 10 black balls. A ball is drawn at random from the box. What is the probability that the ball drawn is either white or red?
In a race, the odds in favour of horses A, B, C, D are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.
A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ \[\bar{ B } \] )
The probabilities of three mutually exclusive events A, B and C are given by 2/3, 1/4 and 1/6 respectively. The statement
If \[\frac{(1 - 3p)}{2}, \frac{(1 + 4p)}{3}, \frac{(1 + p)}{6}\] are the probabilities of three mutually exclusive and exhaustive events, then the set of all values of p is
If A and B are mutually exclusive events then
An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:
P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = – 0.20
An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:
P(A) = `9/120`, P(B) = `45/120`, P(C) = `27/120`, P(D) = `46/120`
If A and B are any two events having P(A ∪ B) = `1/2` and P`(barA) = 2/3`, then the probability of `barA ∩ B` is ______.
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(B′)
If A and B are mutually exclusive events, then ______.
If the events A and B are mutually exclusive events such that P(A) = `(3x + 1)/3` and P(B) = `(1 - x)/4`, then the set of possible values of x lies in the interval ______.