English

Three Coins Are Tossed. Describe.(Ii) Three Events A, B And C Which Are Mutually Exclusive and Exhaustive. - Mathematics

Advertisements
Advertisements

Question

Three coins are tossed. Describe. three events AB and C which are mutually exclusive and exhaustive.

Solution

When three coins are tossed, the sample space is given by
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

 The three events that are mutually exclusive and exhaustive are as follows:
      A: getting no heads
      B: getting exactly one head
      C: getting at least two heads
      i.e. A = {TTT}, B = {HTT, THT, TTH} and C = {HHH, HHT,              HTH, THH}
   This is because A ∩ B = B ∩ C = C ∩ A = Φ and A ∪ B ∪ C = S

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.2 | Q 5.2 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A die is rolled. Let E be the event “die shows 4” and F be the event “die shows even number”. Are E and F mutually exclusive?


Three coins are tossed. Describe two events, which are not mutually exclusive.


Three coins are tossed. Describe two events which are mutually exclusive but not exhaustive.


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5.

State true or false: (give reason for your answer).

A and B are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

 A and C are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A and B' are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A' , B' ,C are mutually exclusive and exhaustive.


Three coins are tossed. Describe.  two events A and B which are mutually exclusive.


Three coins are tossed. Describe. two events A and B which are not mutually exclusive.


Two dice are thrown. The events ABCDE and F are described as :
A = Getting an even number on the first die.
B = Getting an odd number on the first die.
C = Getting at most 5 as sum of the numbers on the two dice.
D = Getting the sum of the numbers on the dice greater than 5 but less than 10.
E = Getting at least 10 as the sum of the numbers on the dice.
F = Getting an odd number on one of the dice.
 Describe the event:
A and BB or CB and CA and EA or FA and F


The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are then put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the following events:
A = The number on the first slip is larger than the one on the second slip.
B = The number on the second slip is greater than 2
C = The sum of the numbers on the two slips is 6 or 7
D = The number on the second slips is twice that on the first slip.
Which pair(s) of events is (are) mutually exclusive?


If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find 

P (A ∪ B)


If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find 

P ( \[\bar{ A} \] ∩ B)


From a well shuffled deck of 52 cards, 4 cards are drawn at random. What is the probability that all the drawn cards are of the same colour.


In a race, the odds in favour of horses ABCD are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)  


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)     


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ \[\bar{ B } \] ) 


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(\[\bar{ A } \] ∩  \[\bar{B} \] ) 

 


If S is the sample space and P(A) = \[\frac{1}{3}\]  P(B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =

 

If A and B are mutually exclusive events then 


An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:

P(A) = `9/120`, P(B) = `45/120`, P(C) = `27/120`, P(D) = `46/120`


If A and B are any two events having P(A ∪ B) = `1/2` and P`(barA) = 2/3`, then the probability of `barA ∩ B` is ______.


A die is loaded in such a way that each odd number is twice as likely to occur as each even number. Find P(G), where G is the event that a number greater than 3 occurs on a single roll of the die.


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(B′)


One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John.
Determine P(John promoted)
P(Rita promoted)
P(Aslam promoted)
P(Gurpreet promoted)


One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John. If A = {John promoted or Gurpreet promoted}, find P(A).


The probability of happening of an event A is 0.5 and that of B is 0.3. If A and B are mutually exclusive events, then the probability of neither A nor B is ______.


Column A Column B
(a) If E1 and E2 are the two mutually exclusive events (i) E1 ∩ E2 = E1
(b) If E1 and E2 are the mutually exclusive and exhaustive events (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1
(c) If E1 and E2 have common outcomes, then (iii) E1 ∩ E2 = Φ, E1 ∪ E2 = S
(d) If E1 and E2 are two events such that E1 ⊂ E2 (iv) E1 ∩ E2 = Φ

Let E1, E2, E3 be three mutually exclusive events such that P(E1) = `(2 + 3p)/6`, P(E2) = `(2 - p)/8` and P(E3) = `(1 - p)/2`. If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×