English

If A and B are any two events having P(A ∪ B) = 12 and P(A¯)=23, then the probability of A¯∩B is ______. - Mathematics

Advertisements
Advertisements

Question

If A and B are any two events having P(A ∪ B) = `1/2` and P`(barA) = 2/3`, then the probability of `barA ∩ B` is ______.

Options

  • `1/2`

  • `2/3`

  • `1/6`

  • `1/3`

MCQ
Fill in the Blanks

Solution

If A and B are any two events having P(A ∪ B) = `1/2` and P`(barA) = 2/3`, then the probability of `barA ∩ B` is `1/6`.

Explanation:

We have P(A ∪ B) = `1/2`

⇒ P(A ∪ (B – A)) = `1/2`

⇒ P(A) + P(B – A) = `1/2`  ......(Since A and B – A are mutually exclusive)

⇒ `1 - P(barA) + P(B - A) = 1/2`

⇒ `1 - 2/3 + P(B - A) = 1/2`

⇒ P(B – A) = `1/6`

⇒ `P(barA ∩ B) = 1/6`   ....(Since `barA` ∩ B = B - A)

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Solved Examples [Page 294]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Solved Examples | Q 12 | Page 294

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Three coins are tossed. Describe two events, which are not mutually exclusive.


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A and B' are mutually exclusive


Given P(A) = `3/5` and P(B) = `1/5`. Find P(A or B), if A and B are mutually exclusive events.


Three coins are tossed. Describe.  two events A and B which are mutually exclusive.


Three coins are tossed. Describe. three events AB and C which are mutually exclusive and exhaustive.


Three coins are tossed. Describe.

(iv) two events A and B which are mutually exclusive but not exhaustive.

 

Two dice are thrown. The events A, B, C, D, E and F are described as:

A = Getting an even number on the first die.

B = Getting an odd number on the first die.

C = Getting at most 5 as sum of the numbers on the two dice.

D = Getting the sum of the numbers on the dice greater than 5 but less than 10.

E = Getting at least 10 as the sum of the numbers on the dice.

F = Getting an odd number on one of the dice.

State true or false:

  1. A and B are mutually exclusive.
  2. A and B are mutually exclusive and exhaustive events.
  3. A and C are mutually exclusive events.
  4. C and D are mutually exclusive and exhaustive events.
  5. C, D and E are mutually exclusive and exhaustive events.
  6. A' and B' are mutually exclusive events.
  7. A, B, F are mutually exclusive and exhaustive events. 

If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find

\[P (\bar{ A } \cap \bar{ B} )\]


If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find 
P (A ∩\[\bar{ B } \] ).

 

Given two mutually exclusive events A and B such that P(A) = 1/2 and P(B) = 1/3, find P(A or B).


From a well shuffled deck of 52 cards, 4 cards are drawn at random. What is the probability that all the drawn cards are of the same colour.


In a race, the odds in favour of horses ABCD are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.


A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)     


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ \[\bar{ B } \] ) 


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(\[\bar{ A } \] ∩  \[\bar{B} \] ) 

 


The probabilities of three mutually exclusive events AB and are given by 2/3, 1/4 and 1/6 respectively. The statement


If S is the sample space and P(A) = \[\frac{1}{3}\]  P(B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =

 

An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:

P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = – 0.20


If A, B, C are three mutually exclusive and exhaustive events of an experiment such that 3P(A) = 2P(B) = P(C), then P(A) is equal to ______.


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′ ∩ B′)


One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John.
Determine P(John promoted)
P(Rita promoted)
P(Aslam promoted)
P(Gurpreet promoted)


One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John. If A = {John promoted or Gurpreet promoted}, find P(A).


Column A Column B
(a) If E1 and E2 are the two mutually exclusive events (i) E1 ∩ E2 = E1
(b) If E1 and E2 are the mutually exclusive and exhaustive events (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1
(c) If E1 and E2 have common outcomes, then (iii) E1 ∩ E2 = Φ, E1 ∪ E2 = S
(d) If E1 and E2 are two events such that E1 ⊂ E2 (iv) E1 ∩ E2 = Φ

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×