English

A die is loaded in such a way that each odd number is twice as likely to occur as each even number. Find P(G), where G is the event that a number greater than 3 occurs on a single roll of the die. - Mathematics

Advertisements
Advertisements

Question

A die is loaded in such a way that each odd number is twice as likely to occur as each even number. Find P(G), where G is the event that a number greater than 3 occurs on a single roll of the die.

Sum

Solution

Given that probability of even numbers

= `1/2` × probability of odd numbers

⇒ P(Odd): P(Even) = 2:1

∴ P(odd number) = `2/(2 + 1) = 2/3`

And P(even number) = `1/(2 + 1) = 1/3`

Also given that, G the event that a number greater than 3 occurs in a single throw of die.

∴ The possible outcome are 4, 5 and 6 out of which two are even and one is odd.

∴ Required probability = P(G)

= 2 × P(even) × P(odd)

= `2 xx 1/3 xx 2/3 = 4/9`

Hence, the required probability is `4/9`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 297]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 5 | Page 297

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

An experiment involves rolling a pair of dice and recording the numbers that come up. Describe the following events:

A: the sum is greater than 8, B: 2 occurs on either die

C: The sum is at least 7 and a multiple of 3.

Which pairs of these events are mutually exclusive?


Three coins are tossed. Describe two events, which are not mutually exclusive.


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5.

State true or false: (give reason for your answer).

A and B are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer).

A = B'


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A and B' are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A' , B' ,C are mutually exclusive and exhaustive.


Given P(A) = `3/5` and P(B) = `1/5`. Find P(A or B), if A and B are mutually exclusive events.


Events E and F are such that P(not E or not F) = 0.25, State whether E and F are mutually exclusive.


Three coins are tossed. Describe. three events AB and C which are mutually exclusive and exhaustive.


Three coins are tossed. Describe.

(iv) two events A and B which are mutually exclusive but not exhaustive.

 

If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find

\[P (\bar{ A } \cap \bar{ B} )\]


If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find 
P (A ∩\[\bar{ B } \] ).

 

In a race, the odds in favour of horses ABCD are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.


The probability that a person will travel by plane is 3/5 and that he will travel by trains is 1/4. What is the probability that he (she) will travel by plane or train?


A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ \[\bar{ B } \] ) 


If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(\[\bar{ A } \] ∩  \[\bar{B} \] ) 

 


If S is the sample space and P(A) = \[\frac{1}{3}\]  P(B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =

 

If ABC are three mutually exclusive and exhaustive events of an experiment such that 3 P(A) = 2 P(B) = P(C), then P(A) is equal to 


An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:

P(A) = `9/120`, P(B) = `45/120`, P(C) = `27/120`, P(D) = `46/120`


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B′)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′ ∩ B′)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×