English

त्रिभुजों PQR और MST में, ∠P = 55°, ∠Q = 25°, ∠M = 100° और ∠S = 25° है। क्या ∆QPR ~ ∆TSM है? क्यों? - Mathematics (गणित)

Advertisements
Advertisements

Question

त्रिभुजों PQR और MST में,  ∠P = 55°, ∠Q = 25°, ∠M = 100° और ∠S = 25° है। क्या ∆QPR ~ ∆TSM है? क्यों?

Sum

Solution

हम जानते हैं कि, एक त्रिभुज के तीन कोणों का योग 180° होता है।


∆PQR में,

∠P + ∠Q + ∠R = 180°

⇒ 55° + 25 ° + ∠R = 180°

⇒∠R = 180° – (55° + 25°)

= 180° – 80°

= 100°

∆TSM में,

∠T + ∠S + ∠M = 180°

⇒ ∠T + ∠25° + 100° = 180°

⇒ ∠T = 180° – (25° + 100°)

= 180° – 125°

= 55°

∆PQR और ∆TSM में,

∠P = ∠T,

∠Q = ∠S 

और ∠R = ∠M

∴ ∠PQR = ∠TSM   ...[चूँकि, सभी संगत कोण बराबर होते हैं।]

इसलिए, ∆QPR, ∆TSM के समान नहीं है, क्योंकि सही संगति P `↔` T, Q `↔` S और R `↔` M है।

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  Is there an error in this question or solution?
Chapter 6: त्रिभुज - प्रश्नावली 6.2 [Page 66]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 6 त्रिभुज
प्रश्नावली 6.2 | Q 5. | Page 66

RELATED QUESTIONS

बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

 


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

 

ΔAEP ∼ ΔCDP


आकृति में, ABC और AMP दो समकोण त्रिभुज हैं, जिनके कोण B और M समकोण हैं। सिद्ध कीजिए कि:

  1. ΔABC ∼ ΔAMP
  2. `"CA"/"PA" = "BC"/"MP"`

यदि त्रिभुज ABC और DEF में, `(AB)/(DE) = (BC)/(FD)` है, तो ये समरूप होंगे, जब ______।


APQR की भुजा QR पर कोई बिंदु D इस प्रकार है कि PD ⊥ QR है। क्या ΔPQD ~ ΔRPD कहना सही होगा? क्यो?


आकृति में, यदि ∠D = ∠C है, तो क्या यह सत्य है कि ΔADE ~ ΔACB है? क्यों?


आकृति में, यदि ∠1 = ∠2 और ΔNSQ ≅ ΔMTR है, तो सिद्ध कीजिए ΔPTS ~ ΔPRQ है।


आकृति में, यदि AB || DC तथा AC और PQ परस्पर बिंदु O पर प्रतिच्छेद करते हैं, तो सिद्ध कीजिए कि OA. CQ = OC. AP है।


यदि ∆ABC ~ ∆DEF, AB = 4 cm, DE = 6 cm, EF = 9 cm और FD = 12 cm है, तो ∆ABC का परिमाप ज्ञात कीजिए। 


एक विशेष समय पर, 15 मीटर ऊँची एक मीनार (टॉवर) की छाया की लंबाई 24 मीटर है। उसी समय पर, एक टेलीफोन के खंभे की छाया की लंबाई 16 मीटर है। टेलीफोन के खंभे की ऊँचाई ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×