Advertisements
Advertisements
Question
Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.
Options
3 A in clockwise direction
9 A in clockwise direction
6 A in anti-clockwise direction
6 A in the clockwise direction
Solution
Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry 6 A in the clockwise direction.
Explanation:
Given: The ratio of the radius of the loops P and Q = 2:3
Current in the loop Q = 9 A in (anticlockwise direction)
To Find: The current in loop P for which the magnetic field at the common centre becomes zero.
⇒ The intensity of the magnetic field (B) at the centre of a circular current-carrying coil is given by the formula:
Magnetic Field (B) = `(μ_0i)/(2R)`
- Where 'i' is the current flowing through the circular coil.
- Here 'R' is the radius of the circular coil.
- 'μ0' is a constant known as the permeability constant of free space.
⇒ The direction of the magnetic field due to the circular current-carrying coil is given by the right-hand thumb rule.
According to this law, if we curl our right-hand palm around the current-carrying loop with fingers pointing in the direction of the current flow, then the direction of our right-hand thumb will give us the direction of the Magnetic field.
⇒ In the given question, the current in loop Q is flowing in the anticlockwise direction. Therefore for the resultant magnetic field to be zero at the common centre, the current in the loop P must flow in the clockwise direction.
Let the magnetic field due to the loop P be 'B1'
Let the magnetic field due to the loop Q be 'B2'
Let the current through the loop P be 'i1'
The ratio of the radius of the loops P and Q is R1:R2 is equal to 2:3.
⇒ The magnetic field 'B1' due to the current-carrying loop P is given by:
B1 = `(μ_0i_1)/(2R_1)` – Equation (i)
⇒ The magnetic field 'B2' due to the current-carrying loop Q is given by:
B2 = `(μ_0i_2)/(2R_2)` – Equation (ii)
⇒ Equating the equations (i) and (ii):
∵ B1 = B2
∴ `(μ_0i_1)/(2R_1) = (μ_0i_2)/(2R_2)`
∴ `i_1/i_2 = R_1/R_2`
∴ `i_1 = 2/3 xx i_2`
∴ `i_1 = 2/3 xx 9`
∴ i1 = 6 Ampere
Therefore for the magnetic field to be zero at the common centre, the loop P must carry a current of 6 Ampere in the clockwise direction.
APPEARS IN
RELATED QUESTIONS
Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.
Using Ampere’s circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis ?
A solid wire of radius 10 cm carries a current of 5.0 A distributed uniformly over its cross section. Find the magnetic field B at a point at a distance (a) 2 cm (b) 10 cm and (c) 20 cm away from the axis. Sketch a graph B versus x for 0 < x < 20 cm.
Define ampere.
Calculate the magnetic field inside and outside of the long solenoid using Ampere’s circuital law
A straight wire of diameter 0.5 mm carrying a current of 1 A is replaced by another wire of 1 mm diameter carrying the same current. The strength of the magnetic field far away is ______.
A long straight wire of radius 'a' carries a steady current 'I'. The current is uniformly distributed across its area of cross-section. The ratio of the magnitude of magnetic field `vecB_1` at `a/2` and `vecB_2` at distance 2a is ______.
Using Ampere’s circuital law, obtain an expression for magnetic flux density ‘B’ at a point near an infinitely long and straight conductor, carrying a current I.