English
Karnataka Board PUCPUC Science Class 11

A Solid Wire of Radius 10 Cm Carries a Current of 5.0 a Distributed Uniformly Over Its Cross Section. Find the Magnetic Field B At a Point at a Distance - Physics

Advertisements
Advertisements

Question

A solid wire of radius 10 cm carries a current of 5.0 A distributed uniformly over its cross section. Find the magnetic field B at a point at a distance (a) 2 cm (b) 10 cm and (c) 20 cm away from the axis. Sketch a graph B versus x for 0 < x < 20 cm. 

Short Note

Solution

Given:
Magnitude of current, i = 5 A
Radius of the wire, b\[= 10 \text{ cm }= 10 \times {10}^{- 2}\]  m

 For a point at a distance a from the axis,
Current enclosed, \[i'   =   \frac{i}{\pi b^2} \times \pi a^2\]
By Ampere's circuital law,
\[\oint B . dl = \mu_0 i'\]
For the given conditions,

\[B \times 2\pi a   =    \mu_0 \frac{i}{\pi b^2} \times \pi a^2 \] 

\[ \Rightarrow B   =   \frac{\mu_0 ia}{2\pi b^2}        \ldots\left( 1 \right)\]

\[(a)\text{  a = 2 cm }= 2 \times {10}^{- 2} \] m
Again, using the circuital law, we get
 

\[B   =   \frac{4\pi \times {10}^{- 7} \times 5 \times 2 \times {10}^{- 2}}{2\pi \times {10}^{- 2}}\] 

\[ =   2 \times  {10}^{- 6}   T = 2  \mu \] T

(b) On putting  \[\text{ a = 10 cm }= 10 \times {10}^{- 2} \] m in (1), we get

B = 10 `μ T` 

(c)Using the circuital law, we get
\[\oint B . dl = \mu_0 i\]
\[B = \frac{\mu_0 i}{2\pi a} = \frac{2 \times {10}^{- 7} \times 5}{20 \times {10}^{- 2}}\]
\[ = 5 \times {10}^{- 6} T = 5 \mu \] T
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - Exercises [Page 252]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
Exercises | Q 50 | Page 252

RELATED QUESTIONS

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


Electron drift speed is estimated to be of the order of mm s−1. Yet large current of the order of few amperes can be set up in the wire. Explain briefly.


Obtain an expression for magnetic induction along the axis of the toroid.


Using Ampere’s circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis ?


In Ampere's  \[\oint \vec{B}  \cdot d \vec{l}  =  \mu_0 i,\] the current outside the curve is not included on the right hand side. Does it mean  that the magnetic field B calculated by using Ampere's law, gives the contribution of only the currents crossing the area bounded by the curve?  


In order to have a current in a long wire, it should be connected to a battery or some such device. Can we obtain the magnetic due to a straight, long wire by using Ampere's law without mentioning this other part of the circuit? 


Consider the situation described in the previous problem. Suppose the current i enters the loop at the points A and leaves it at the point B. Find the magnetic field at the centre of the loop. 


A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.  


Sometimes we show an idealised magnetic field which is uniform in a given region and falls to zero abruptly. One such field is represented in figure. Using Ampere's law over the path PQRS, show that such a field is not possible. 


State Ampere’s circuital law.


A straight wire of diameter 0.5 mm carrying a current of 1 A is replaced by another wire of 1 mm diameter carrying the same current. The strength of the magnetic field far away is ______.


Which of the following is the correct definition of ampere?

A long solenoid having 200 turns per cm carries a current of 1.5 amp. At the centre of it is placed a coil of 100 turns of cross-sectional area 3.14 × 10−4 m2 having its axis parallel to the field produced by the solenoid. When the direction of current in the solenoid is reversed within 0.05 sec, the induced e.m.f. in the coil is:


Ampere's circuital law is used to find out ______


Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.

  1. `oint B.dl = +- 2μ_0I`
  2. the value of `oint B.dl` is independent of sense of C.
  3. there may be a point on C where B and dl are perpendicular.
  4. B vanishes everywhere on C.

Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

Briefly explain various ways to increase the strength of the magnetic field produced by a given solenoid.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×