Advertisements
Advertisements
प्रश्न
Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.
पर्याय
3 A in clockwise direction
9 A in clockwise direction
6 A in anti-clockwise direction
6 A in the clockwise direction
उत्तर
Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry 6 A in the clockwise direction.
Explanation:
Given: The ratio of the radius of the loops P and Q = 2:3
Current in the loop Q = 9 A in (anticlockwise direction)
To Find: The current in loop P for which the magnetic field at the common centre becomes zero.
⇒ The intensity of the magnetic field (B) at the centre of a circular current-carrying coil is given by the formula:
Magnetic Field (B) = `(μ_0i)/(2R)`
- Where 'i' is the current flowing through the circular coil.
- Here 'R' is the radius of the circular coil.
- 'μ0' is a constant known as the permeability constant of free space.
⇒ The direction of the magnetic field due to the circular current-carrying coil is given by the right-hand thumb rule.
According to this law, if we curl our right-hand palm around the current-carrying loop with fingers pointing in the direction of the current flow, then the direction of our right-hand thumb will give us the direction of the Magnetic field.
⇒ In the given question, the current in loop Q is flowing in the anticlockwise direction. Therefore for the resultant magnetic field to be zero at the common centre, the current in the loop P must flow in the clockwise direction.
Let the magnetic field due to the loop P be 'B1'
Let the magnetic field due to the loop Q be 'B2'
Let the current through the loop P be 'i1'
The ratio of the radius of the loops P and Q is R1:R2 is equal to 2:3.
⇒ The magnetic field 'B1' due to the current-carrying loop P is given by:
B1 = `(μ_0i_1)/(2R_1)` – Equation (i)
⇒ The magnetic field 'B2' due to the current-carrying loop Q is given by:
B2 = `(μ_0i_2)/(2R_2)` – Equation (ii)
⇒ Equating the equations (i) and (ii):
∵ B1 = B2
∴ `(μ_0i_1)/(2R_1) = (μ_0i_2)/(2R_2)`
∴ `i_1/i_2 = R_1/R_2`
∴ `i_1 = 2/3 xx i_2`
∴ `i_1 = 2/3 xx 9`
∴ i1 = 6 Ampere
Therefore for the magnetic field to be zero at the common centre, the loop P must carry a current of 6 Ampere in the clockwise direction.
APPEARS IN
संबंधित प्रश्न
Electron drift speed is estimated to be of the order of mm s−1. Yet large current of the order of few amperes can be set up in the wire. Explain briefly.
Obtain an expression for magnetic induction along the axis of the toroid.
A long straight wire of a circular cross-section of radius ‘a’ carries a steady current ‘I’. The current is uniformly distributed across the cross-section. Apply Ampere’s circuital law to calculate the magnetic field at a point ‘r’ in the region for (i) r < a and (ii) r > a.
A long, straight wire carries a current. Is Ampere's law valid for a loop that does not enclose the wire, or that encloses the wire but is not circular?
A solid wire of radius 10 cm carries a current of 5.0 A distributed uniformly over its cross section. Find the magnetic field B at a point at a distance (a) 2 cm (b) 10 cm and (c) 20 cm away from the axis. Sketch a graph B versus x for 0 < x < 20 cm.
What is magnetic permeability?
A long solenoid having 200 turns per cm carries a current of 1.5 amp. At the centre of it is placed a coil of 100 turns of cross-sectional area 3.14 × 10−4 m2 having its axis parallel to the field produced by the solenoid. When the direction of current in the solenoid is reversed within 0.05 sec, the induced e.m.f. in the coil is:
A thick current carrying cable of radius ‘R’ carries current ‘I’ uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance ‘r’ from the axis of the cable is represented by ______
Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.
- `oint B.dl = +- 2μ_0I`
- the value of `oint B.dl` is independent of sense of C.
- there may be a point on C where B and dl are perpendicular.
- B vanishes everywhere on C.
Briefly explain various ways to increase the strength of the magnetic field produced by a given solenoid.