मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Obtain an Expression for Magnetic Induction Along the Axis of Toroid. - Physics

Advertisements
Advertisements

प्रश्न

Obtain an expression for magnetic induction along the axis of the toroid.

थोडक्यात उत्तर

उत्तर

Magnetic induction along the axis of toroid:

The toroid is a solenoid bent into a shape of the hollow doughnut.

Consider a toroidal solenoid of average radius ‘r’ having center carrying the current I. In order to find magnetic field produced at the center along the axis of toroid due to the current flowing through the coil, imagine an Amperial loop of radius ‘r’ and traverse it in the clockwise direction.

According to Ampere’s circuital law, 

`ointvecB.vec(dL)=mu_0I`

Here current I flow through the ring as many times time as there are the number of turns. Thus the total current flowing through toroid is N I , where N is the total number of turns.

`:.ointvecB.vec(dL)=mu_0NI" ---------(1)"`

Now, and are in same direction `:.ointvecB.vec(dL)=BointdL`

`:.ointvecB.vec(dL)=B(2pir)" ------(2)"`

Comparing equation (1) and equation (2 )

μ0NI=B(2πr)  `:.B=(mu_0NI)/(2pir)` .......(3)

If ‘n’ is the number of turns per unit length of toroid then `n=N/(2pir)`

Substituting this value in equation No (3) we get B = μ0 n I

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


State Ampere’s circuital law.


State Ampere’s circuital law.


A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?


In order to have a current in a long wire, it should be connected to a battery or some such device. Can we obtain the magnetic due to a straight, long wire by using Ampere's law without mentioning this other part of the circuit? 


A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic field
(a) increases linearly from the axis to the surface
(b) is constant inside the tube
(c) is zero at the axis
(d) is zero just outside the tube.


A thin but long, hollow, cylindrical tube of radius r carries i along its length. Find the magnitude  of the magnetic field at a distance r/2 from the surface (a) inside the tube (b) outside the tube.


Sometimes we show an idealised magnetic field which is uniform in a given region and falls to zero abruptly. One such field is represented in figure. Using Ampere's law over the path PQRS, show that such a field is not possible. 


Two large metal sheets carry currents as shown in figure. The current through a strip of width dl is Kdl where K is a constant. Find the magnetic field at the points P, Q and R.


Consider the situation of the previous problem. A particle having charge q and mass mis projected from the point Q in a direction going into the plane of the diagram. It is found to describe a circle of radius r between the two plates. Find the speed of the charged particle.


Using Ampere's circuital law, obtain an expression for the magnetic flux density 'B' at a point 'X' at a perpendicular distance 'r' from a long current-carrying conductor.
(Statement of the law is not required).


What is magnetic permeability?


Define ampere.


Find the magnetic field due to a long straight conductor using Ampere’s circuital law.


Calculate the magnetic field inside and outside of the long solenoid using Ampere’s circuital law


The wires which connect the battery of an automobile to its starting motor carry a current of 300 A (for a short time). What is the force per unit length between the wires if they are 70 cm long and 1.5 cm apart? Is the force attractive or repulsive?


A straight wire of diameter 0.5 mm carrying a current of 1 A is replaced by another wire of 1 mm diameter carrying the same current. The strength of the magnetic field far away is ______.


Ampere’s circuital law is equivalent to ______.

Ampere’s circuital law is given by _______.


In a capillary tube, the water rises by 1.2 mm. The height of water that will rise in another capillary tube having half the radius of the first is:


A thick current carrying cable of radius ‘R’ carries current ‘I’ uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance ‘r’ from the axis of the cable is represented by:


A thick current carrying cable of radius ‘R’ carries current ‘I’ uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance ‘r’ from the axis of the cable is represented by ______


Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.

  1. `oint B.dl = +- 2μ_0I`
  2. the value of `oint B.dl` is independent of sense of C.
  3. there may be a point on C where B and dl are perpendicular.
  4. B vanishes everywhere on C.

Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.


Using Ampere’s circuital law, obtain an expression for magnetic flux density ‘B’ at a point near an infinitely long and straight conductor, carrying a current I.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×