मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Hollow Tube is Carrying an Electric Current Along Its Length Distributed Uniformly Over Its Surface. the Magnetic Field - Physics

Advertisements
Advertisements

प्रश्न

A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic field
(a) increases linearly from the axis to the surface
(b) is constant inside the tube
(c) is zero at the axis
(d) is zero just outside the tube.

टीपा लिहा

उत्तर

(b) is constant inside the tube
(c) is zero at the axis

A hollow tube is carrying uniform electric current along its length, so the current enclosed inside the tube is zero.
According to Ampere's law, 

\[\oint \vec{B} . d \vec{l} = \mu_o i_{\text{inside}} \]
\[\text{ Inside the tube }, \]
\[\oint \vec{B} . d \vec{l} = 0, r < R\]
\[ \Rightarrow B_{\text{inside}} = \text{ Constant}\]
\[ \Rightarrow B_{\text{axis}} = 0 \]

The  magnetic fields from points on the circular surface will point in opposite directions and cancel each other.

Outside the tube, 
\[B \times 2\pi r = \mu_o i\]
\[ \Rightarrow B_{\text{outside}} = \frac{\mu_o i}{2\pi r}, r > R\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Magnetic Field due to a Current - MCQ [पृष्ठ २४९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 13 Magnetic Field due to a Current
MCQ | Q 5 | पृष्ठ २४९

संबंधित प्रश्‍न

State Ampere’s circuital law.


A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?


A long, straight wire carries a current. Is Ampere's law valid for a loop that does not enclose the wire, or that encloses the wire but is not circular?


In order to have a current in a long wire, it should be connected to a battery or some such device. Can we obtain the magnetic due to a straight, long wire by using Ampere's law without mentioning this other part of the circuit? 


A long, cylindrical tube of inner and outer  radii a and b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnitude filed at a point (a) just inside the tube (b) just outside the tube.


A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.  


Sometimes we show an idealised magnetic field which is uniform in a given region and falls to zero abruptly. One such field is represented in figure. Using Ampere's law over the path PQRS, show that such a field is not possible. 


Define ampere.


Find the magnetic field due to a long straight conductor using Ampere’s circuital law.


Calculate the magnetic field inside and outside of the long solenoid using Ampere’s circuital law


The wires which connect the battery of an automobile to its starting motor carry a current of 300 A (for a short time). What is the force per unit length between the wires if they are 70 cm long and 1.5 cm apart? Is the force attractive or repulsive?


The magnetic field around a long straight current carrying wire is ______.

Ampere’s circuital law is given by _______.


Two identical current carrying coaxial loops, carry current I in opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C, then which statement is correct?


A long straight wire of radius 'a' carries a steady current 'I'. The current is uniformly distributed across its area of cross-section. The ratio of the magnitude of magnetic field `vecB_1` at `a/2` and `vecB_2` at distance 2a is ______.


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

The given figure shows a long straight wire of a circular cross-section (radius a) carrying steady current I. The current I is uniformly distributed across this cross-section. Calculate the magnetic field in the region r < a and r > a.

 


When current flowing through a solenoid decreases from 5A to 0 in 20 milliseconds, an emf of 500V is induced in it.

  1. What is this phenomenon called?
  2. Calculate coefficient of self-inductance of the solenoid.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×