मराठी

When current flowing through a solenoid decreases from 5A to 0 in 20 milliseconds, an emf of 500V is induced in it. 1. What is this phenomenon called? - Physics (Theory)

Advertisements
Advertisements

प्रश्न

When current flowing through a solenoid decreases from 5A to 0 in 20 milliseconds, an emf of 500V is induced in it.

  1. What is this phenomenon called?
  2. Calculate coefficient of self-inductance of the solenoid.
थोडक्यात उत्तर
संख्यात्मक

उत्तर

1. The phenomenon is called self-induction.

2. ΔI = (5 – 0) A = 5 A, Δt = 20 × 10-3 sec.

`e = L (ΔI)/(Δt)`

`L = e × (Δt)/(ΔI)`

= `(500 xx 20 xx 10^(-3))/5 "H"`

= 2H

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


State Ampere’s circuital law.


Electron drift speed is estimated to be of the order of mm s−1. Yet large current of the order of few amperes can be set up in the wire. Explain briefly.


A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?


A long, straight wire carries a current. Is Ampere's law valid for a loop that does not enclose the wire, or that encloses the wire but is not circular?


A thin but long, hollow, cylindrical tube of radius r carries i along its length. Find the magnitude  of the magnetic field at a distance r/2 from the surface (a) inside the tube (b) outside the tube.


A solid wire of radius 10 cm carries a current of 5.0 A distributed uniformly over its cross section. Find the magnetic field B at a point at a distance (a) 2 cm (b) 10 cm and (c) 20 cm away from the axis. Sketch a graph B versus x for 0 < x < 20 cm. 


Define ampere.


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

Briefly explain various ways to increase the strength of the magnetic field produced by a given solenoid.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×