मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

State Ampere’s circuital law. - Physics

Advertisements
Advertisements

प्रश्न

State Ampere’s circuital law.

State Ampere's circuital law, expressing it in the integral form.

लघु उत्तर

उत्तर १

Ampere’s circuital law states that the line integral of magnetic field induction `vecB`  around a closed path in vacuum is equal to μ0 times the total current I passing through the surface, i.e. `ointvecB.vec(dl)=mu_0I`

shaalaa.com

उत्तर २

Ampere’s Circuital Law states that the circulation of the resultant magnetic field along a closed, plane curve is equal to μo times the total current crossing the area bounded by the closed curve, provided the electric field inside the loop remains constant.

In the above illustration, the Ampere’s Circuital Law can be written as follows:

`ointvecB.vec(dl)=mu_0i`

where, i=|i1i2|

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?


Obtain an expression for magnetic induction along the axis of the toroid.


Explain Ampere’s circuital law.


Using Ampere’s circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis ?


A long straight wire of a circular cross-section of radius ‘a’ carries a steady current ‘I’. The current is uniformly distributed across the cross-section. Apply Ampere’s circuital law to calculate the magnetic field at a point ‘r’ in the region for (i) r < a and (ii) r > a.


In Ampere's  \[\oint \vec{B}  \cdot d \vec{l}  =  \mu_0 i,\] the current outside the curve is not included on the right hand side. Does it mean  that the magnetic field B calculated by using Ampere's law, gives the contribution of only the currents crossing the area bounded by the curve?  


A long, straight wire carries a current. Is Ampere's law valid for a loop that does not enclose the wire, or that encloses the wire but is not circular?


In order to have a current in a long wire, it should be connected to a battery or some such device. Can we obtain the magnetic due to a straight, long wire by using Ampere's law without mentioning this other part of the circuit? 


A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic field
(a) increases linearly from the axis to the surface
(b) is constant inside the tube
(c) is zero at the axis
(d) is zero just outside the tube.


A thin but long, hollow, cylindrical tube of radius r carries i along its length. Find the magnitude  of the magnetic field at a distance r/2 from the surface (a) inside the tube (b) outside the tube.


A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.  


Two large metal sheets carry currents as shown in figure. The current through a strip of width dl is Kdl where K is a constant. Find the magnetic field at the points P, Q and R.


Consider the situation of the previous problem. A particle having charge q and mass mis projected from the point Q in a direction going into the plane of the diagram. It is found to describe a circle of radius r between the two plates. Find the speed of the charged particle.


Find the magnetic field due to a long straight conductor using Ampere’s circuital law.


Calculate the magnetic field inside and outside of the long solenoid using Ampere’s circuital law


Ampere’s circuital law states that ______.

Which of the following is the correct definition of ampere?

Ampere’s circuital law is given by _______.


A solenoid of length 0.6 m has a radius of 2 cm and is made up of 600 turns If it carries a current of 4 A, then the magnitude of the magnetic field inside the solenoid is:


A long solenoid having 200 turns per cm carries a current of 1.5 amp. At the centre of it is placed a coil of 100 turns of cross-sectional area 3.14 × 10−4 m2 having its axis parallel to the field produced by the solenoid. When the direction of current in the solenoid is reversed within 0.05 sec, the induced e.m.f. in the coil is:


Ampere's circuital law is used to find out ______


A thick current carrying cable of radius ‘R’ carries current ‘I’ uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance ‘r’ from the axis of the cable is represented by:


A thick current carrying cable of radius ‘R’ carries current ‘I’ uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance ‘r’ from the axis of the cable is represented by ______


Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.

  1. `oint B.dl = +- 2μ_0I`
  2. the value of `oint B.dl` is independent of sense of C.
  3. there may be a point on C where B and dl are perpendicular.
  4. B vanishes everywhere on C.

Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.


A long straight wire of radius 'a' carries a steady current 'I'. The current is uniformly distributed across its area of cross-section. The ratio of the magnitude of magnetic field `vecB_1` at `a/2` and `vecB_2` at distance 2a is ______.


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

The given figure shows a long straight wire of a circular cross-section (radius a) carrying steady current I. The current I is uniformly distributed across this cross-section. Calculate the magnetic field in the region r < a and r > a.

 


Using Ampere’s circuital law, obtain an expression for magnetic flux density ‘B’ at a point near an infinitely long and straight conductor, carrying a current I.


When current flowing through a solenoid decreases from 5A to 0 in 20 milliseconds, an emf of 500V is induced in it.

  1. What is this phenomenon called?
  2. Calculate coefficient of self-inductance of the solenoid.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×