मराठी

Write Maxwell'S Generalization of Ampere'S Circuital Law - Physics

Advertisements
Advertisements

प्रश्न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.

उत्तर

Maxwell's generalisation of Ampere's circuital law is given as follows:

`ointvecB.vec"dl"=mu_0(I+I_D)=mu_0(I+varepsilon_0 (dphi)/dt)`

Consider that a parallel capacitor C is charging in a circuit.

The magnitude of electric field between the two plates will be `E=q/(varepsilon_0 A)`and is perpendicular to the surface of the plate.

`phi_E=vecE.vecA=EA cos0=q/(varepsilon_0 A)xxA=q/varepsilon_0`

`=>(dphi_E)/dt=(d(q/varepsilon_0))/dt`

`=>(dq)/dt=varepsilon_0(dphi_E)/dt ("Here, dq/dt is rate of change of charge with time.")`

`=>I=varepsilon_0(dphi_E)/dt`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


State Ampere’s circuital law.


Electron drift speed is estimated to be of the order of mm s−1. Yet large current of the order of few amperes can be set up in the wire. Explain briefly.


Explain Ampere’s circuital law.


In a coaxial, straight cable, the central conductor and the outer conductor carry equal currents in opposite directions. The magnetic field is zero
(a) outside the cable
(b) inside the inner conductor
(c) inside the outer conductor
(d) in between the tow conductors.


Define ampere.


A long solenoid has a radius a and number of turns per unit length n. If it carries a current i, then the magnetic field on its axis is directly proportional to ______.

A solenoid of length 0.6 m has a radius of 2 cm and is made up of 600 turns If it carries a current of 4 A, then the magnitude of the magnetic field inside the solenoid is:


A thick current carrying cable of radius ‘R’ carries current ‘I’ uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance ‘r’ from the axis of the cable is represented by ______


Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.

  1. `oint B.dl = +- 2μ_0I`
  2. the value of `oint B.dl` is independent of sense of C.
  3. there may be a point on C where B and dl are perpendicular.
  4. B vanishes everywhere on C.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×