मराठी

Electron Drift Speed is Estimated to Be of the Order of mm s^−1. Yet Large Current of the Order of Few Amperes Can Be Set up in the Wire. Explain Briefly. - Physics

Advertisements
Advertisements

प्रश्न

Electron drift speed is estimated to be of the order of mm s−1. Yet large current of the order of few amperes can be set up in the wire. Explain briefly.

उत्तर

Electron drift is estimated to be of the order of mm s−1. However, the current set up in the wires is of the order of few amperes. This is because the electron density is very large in a material. It is of the order 1028/m3 of the wire. Hence, all these electrons contribute to the total current. Therefore, despite having small drift speeds, the current set up in wires is large.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Panchkula Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


In Ampere's  \[\oint \vec{B}  \cdot d \vec{l}  =  \mu_0 i,\] the current outside the curve is not included on the right hand side. Does it mean  that the magnetic field B calculated by using Ampere's law, gives the contribution of only the currents crossing the area bounded by the curve?  


A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.  


Sometimes we show an idealised magnetic field which is uniform in a given region and falls to zero abruptly. One such field is represented in figure. Using Ampere's law over the path PQRS, show that such a field is not possible. 


Find the magnetic field due to a long straight conductor using Ampere’s circuital law.


Ampere’s circuital law is equivalent to ______.

Ampere’s circuital law is given by _______.


A long straight wire of radius 'a' carries a steady current 'I'. The current is uniformly distributed across its area of cross-section. The ratio of the magnitude of magnetic field `vecB_1` at `a/2` and `vecB_2` at distance 2a is ______.


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×