मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

In Order to Have a Current in a Long Wire, It Should Be Connected to a Battery Or Some Such Device. Can We Obtain the Magnetic Due to a Straight, - Physics

Advertisements
Advertisements

प्रश्न

In order to have a current in a long wire, it should be connected to a battery or some such device. Can we obtain the magnetic due to a straight, long wire by using Ampere's law without mentioning this other part of the circuit? 

टीपा लिहा

उत्तर

We can obtain a magnetic field due to a straight, long wire using Ampere's law by mentioning the current flowing in the wire, without emphasising on the source of the current in the wire. To apply Ampere's circuital law, we need to have a constant current flowing in the wire, irrespective of its source.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Magnetic Field due to a Current - Short Answers [पृष्ठ २४८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 13 Magnetic Field due to a Current
Short Answers | Q 10 | पृष्ठ २४८

संबंधित प्रश्‍न

State Ampere’s circuital law.


A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?


Obtain an expression for magnetic induction along the axis of the toroid.


Using Ampere’s circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis ?


In a coaxial, straight cable, the central conductor and the outer conductor carry equal currents in opposite directions. The magnetic field is zero
(a) outside the cable
(b) inside the inner conductor
(c) inside the outer conductor
(d) in between the tow conductors.


A thin but long, hollow, cylindrical tube of radius r carries i along its length. Find the magnitude  of the magnetic field at a distance r/2 from the surface (a) inside the tube (b) outside the tube.


Consider the situation of the previous problem. A particle having charge q and mass mis projected from the point Q in a direction going into the plane of the diagram. It is found to describe a circle of radius r between the two plates. Find the speed of the charged particle.


Find the magnetic field due to a long straight conductor using Ampere’s circuital law.


The magnetic field around a long straight current carrying wire is ______.

A long solenoid has a radius a and number of turns per unit length n. If it carries a current i, then the magnetic field on its axis is directly proportional to ______.

Ampere’s circuital law is given by _______.


In a capillary tube, the water rises by 1.2 mm. The height of water that will rise in another capillary tube having half the radius of the first is:


The force required to double the length of a steel wire of area 1 cm2, if it's Young's modulus Y = `2 xx 10^11/m^2` is:


Ampere's circuital law is used to find out ______


Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.

  1. `oint B.dl = +- 2μ_0I`
  2. the value of `oint B.dl` is independent of sense of C.
  3. there may be a point on C where B and dl are perpendicular.
  4. B vanishes everywhere on C.

Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.


The given figure shows a long straight wire of a circular cross-section (radius a) carrying steady current I. The current I is uniformly distributed across this cross-section. Calculate the magnetic field in the region r < a and r > a.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×