मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Long, Straight Wire Carries a Current. is Ampere'S Law Valid for a Loop that Does Not Enclose the Wire, Or that Encloses the Wire but is Not Circular? - Physics

Advertisements
Advertisements

प्रश्न

A long, straight wire carries a current. Is Ampere's law valid for a loop that does not enclose the wire, or that encloses the wire but is not circular?

टीपा लिहा

उत्तर

Ampere's law is valid for a loop that is not circular. However, it should have some charge distribution in the area enclosed so as to have a constant electric field in the region and a non-zero magnetic field. Even if the loop defined does not have its own charge distribution but has electric influence of some other charge distribution, it can have some constant magnetic field ( \[\oint \vec{B}  . d \vec{l}    =    \mu_o  i_{\text{enclosed }}\] ).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Magnetic Field due to a Current - Short Answers [पृष्ठ २४८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 13 Magnetic Field due to a Current
Short Answers | Q 6 | पृष्ठ २४८

संबंधित प्रश्‍न

Write Maxwell's generalization of Ampere's circuital law. Show that in the process of charging a capacitor, the current produced within the plates of the capacitor is `I=varepsilon_0 (dphi_E)/dt,`where ΦE is the electric flux produced during charging of the capacitor plates.


A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?


Obtain an expression for magnetic induction along the axis of the toroid.


Using Ampere’s circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis ?


A long straight wire of a circular cross-section of radius ‘a’ carries a steady current ‘I’. The current is uniformly distributed across the cross-section. Apply Ampere’s circuital law to calculate the magnetic field at a point ‘r’ in the region for (i) r < a and (ii) r > a.


In Ampere's  \[\oint \vec{B}  \cdot d \vec{l}  =  \mu_0 i,\] the current outside the curve is not included on the right hand side. Does it mean  that the magnetic field B calculated by using Ampere's law, gives the contribution of only the currents crossing the area bounded by the curve?  


A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic field
(a) increases linearly from the axis to the surface
(b) is constant inside the tube
(c) is zero at the axis
(d) is zero just outside the tube.


Consider the situation described in the previous problem. Suppose the current i enters the loop at the points A and leaves it at the point B. Find the magnetic field at the centre of the loop. 


Two large metal sheets carry currents as shown in figure. The current through a strip of width dl is Kdl where K is a constant. Find the magnetic field at the points P, Q and R.


Using Ampere's circuital law, obtain an expression for the magnetic flux density 'B' at a point 'X' at a perpendicular distance 'r' from a long current-carrying conductor.
(Statement of the law is not required).


What is magnetic permeability?


State Ampere’s circuital law.


Calculate the magnetic field inside and outside of the long solenoid using Ampere’s circuital law


A straight wire of diameter 0.5 mm carrying a current of 1 A is replaced by another wire of 1 mm diameter carrying the same current. The strength of the magnetic field far away is ______.


Ampere’s circuital law is given by _______.


In a capillary tube, the water rises by 1.2 mm. The height of water that will rise in another capillary tube having half the radius of the first is:


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

Briefly explain various ways to increase the strength of the magnetic field produced by a given solenoid.


Using Ampere’s circuital law, obtain an expression for magnetic flux density ‘B’ at a point near an infinitely long and straight conductor, carrying a current I.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×