English
Karnataka Board PUCPUC Science 2nd PUC Class 12

Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0 × 10−22 C/m2. What is E: - Physics

Advertisements
Advertisements

Question

Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0 × 10−22 C/m2. What is E:

  1. in the outer region of the first plate,
  2. in the outer region of the second plate, and
  3. between the plates?
Numerical

Solution

The situation is represented in the following figure.

A and B are two parallel plates close to each other. Outer region of plate A is labelled as I, the outer region of plate B is labelled as III, and the region between the plates, A and B, is labelled as II.

Charge density of plate A, σ = 17.0 × 10−22 C/m2

Charge density of plate B, σ = −17.0 × 10−22 C/m2

In regions, I and III, electric field E is zero. This is because the charge is not enclosed by the respective plates.

Electric field E in region II is given by the relation,

`"E" = sigma/in_0`

Where,

0 = Permittivity of free space = 8.854 × 10−12 N−1 Cm−2

∴ `"E" = (17.0 xx 10^-22)/(8.854 xx 10^-12)`

= 1.92 × 10−10 N/C

Therefore, the electric field between the plates is 1.92 × 10−10 N/C.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Electric Charges and Fields - Exercise [Page 48]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 1 Electric Charges and Fields
Exercise | Q 1.24 | Page 48
NCERT Physics [English] Class 12
Chapter 1 Electric Charge and Fields
Exercise | Q 24 | Page 48

RELATED QUESTIONS

 Use Gauss's law to find the electric field due to a uniformly charged infinite plane sheet. What is the direction of field for positive and negative charge densities?

 


Find the electric field intensity due to a uniformly charged spherical shell at a point (i) outside the shell. Plot the graph of electric field with distance from the centre of the shell.


Find the ratio of the potential differences that must be applied across the parallel and series combination of two capacitors C1 and C2 with their capacitances in the ratio 1 : 2 so that the energy stored in the two cases becomes the same.


An infinitely large thin plane sheet has a uniform surface charge density +σ. Obtain the expression for the amount of work done in bringing a point charge q from infinity to a point, distant r, in front of the charged plane sheet. 


Using Gauss's law in electrostatics, deduce an expression for electric field intensity due to a uniformly charged infinite plane sheet. If another identical sheet is placed parallel to it, show that there is no electric field in the region between the two sheets ?


A small conducting sphere of radius 'r' carrying a charge +q is surrounded by a large concentric conducting shell of radius Ron which a charge +Q is placed. Using Gauss's law, derive the expressions for the electric field at a point 'x'
(i) between the sphere and the shell (r < x < R),
(ii) outside the spherical shell.


Using Gauss’ law deduce the expression for the electric field due to a uniformly charged spherical conducting shell of radius R at a point

(i) outside and (ii) inside the shell.

Plot a graph showing variation of electric field as a function of r > R and r < R.

(r being the distance from the centre of the shell)


Using Gauss’s law, prove that the electric field at a point due to a uniformly charged infinite plane sheet is independent of the distance from it.


A charge Q is uniformly distributed on a spherical shell. What is the field at the centre of the shell? If a point charge is brought close to the shell, will the field at the centre change? Does your answer depend on whether the shell is conducting or non-conducting?


A spherical shell made of plastic, contains a charge Q distributed uniformly over its surface. What is the electric field inside the shell? If the shell is hammered to deshape it, without altering the charge, will the field inside be changed? What happens if the shell is made of a metal?


A rubber balloon is given a charge Q distributed uniformly over its surface. Is the field inside the balloon zero everywhere if the balloon does not have a spherical surface?


A thin, metallic spherical shell contains a charge Q on it. A point charge q is placed at the centre of the shell and another charge q1 is placed outside it as shown in the  following figure . All the three charges are positive. The force on the charge at the centre is ____________.


A positive point charge Q is brought near an isolated metal cube.


A large non-conducting sheet M is given a uniform charge density. Two uncharged small metal rods A and B are placed near the sheet as shown in the following  figure.

(a) M attracts A.
(b) M attracts B.
(c) A attracts B.
(d) B attracts A.


Find the flux of the electric field through a spherical surface of radius R due to a charge of 10−7 C at the centre and another equal charge at a point 2R away from the centre in the following figure.


A circular wire-loop of radius a carries a total charge Q distributed uniformly over its length. A small length dL of the wire is cut off. Find the electric field at the centre due to the remaining wire.


If one penetrates a uniformly charged spherical cloud, electric field strength ______.

“A uniformly charged conducting spherical shell for the points outside the shell behaves as if the entire charge of the shell is concentrated at its centre”. Show this with the help of a proper diagram and verify this statement.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×