English
Karnataka Board PUCPUC Science Class 11

Two Parallel, Long Wires Carry Currents I1 And I2 With I1 > I2. When the Currents Are in the Same Direction, the Magnetic Field at a Point Midway Between the Wires is 10 µT. - Physics

Advertisements
Advertisements

Question

Two parallel, long wires carry currents i1 and i2 with i1 > i2. When the currents are in the same direction, the magnetic field at a point midway between the wires is 10 µT. If the direction of i2 is reversed, the field becomes 30 µT. The ratio i1/i2 is 

Options

  • 4

  • 3

  • 2

  • 1

MCQ

Solution

 2
The magnetic field due to the current-carrying long, straight wire at point a is given by \[B = \frac{\mu_o i}{2\pi a}\] When both the wires carry currents i1 and i2 in the same direction, they produce magnetic fields in opposite directions at any point in between the wires.

\[B' = \frac{\mu_o i_1}{2\pi a} - \frac{\mu_o i_2}{2\pi a} = 10 \mu T . . (1)\]
Here, is the distance of the midpoint from both the wires.
When both the wires carry currents in opposite directions, they produce fields in the same direction at the midpoint of the two wires.
\[B'' = \frac{\mu_o i_1}{2\pi a} + \frac{\mu_o i_2}{2\pi a} = 30 \mu T . . (2)\]
On solving eqs. (1) and (2), we get
\[i_1 - i_2 = 10\]
\[ i_1 + i_2 = 30\]
\[ \Rightarrow i_1 = 20, i_2 = 10\]
\[ \Rightarrow \frac{i_1}{i_2} = \frac{2}{1} = 2\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - MCQ [Page 249]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
MCQ | Q 11 | Page 249

RELATED QUESTIONS

Using the concept of force between two infinitely long parallel current carrying conductors, define one ampere of current.


How does one understand this motional emf by invoking the Lorentz force acting on the free charge carriers of the conductor? Explain.


An electron beam projected along the positive x-axis deflects along the positive y-axis. If this deflection is caused by a magnetic field, what is the direction of the field? Can we conclude that the field is parallel to the z-axis?


A long, straight wire carries a current along the z-axis, One can find two points in the xy plane such that
(a) the magnetic fields are equal
(b) the directions of the magnetic fields are the same
(c) the magnitudes of the magnetic fields are equal
(d) the field at one point is opposite to that at the other point.


A current of 10 A is established in a long wire along the positive z-axis. Find the magnetic field  \[\vec{B}\]  at the point (1 m, 0, 0).


A transmission wire carries a current of 100 A. What would be the magnetic field B at a point on the road if the wire is 8 m above the road? 


A long, straight wire carrying a current of 1.0 A is placed horizontally in a uniform magnetic field B = 1.0 × 10−5 T pointing vertically upward figure. Find the magnitude of the resultant magnetic field at the points P and Q, both situated at a distance of 2.0 cm from the wire in the same horizontal plane. 



The magnetic field existing in a region is given by  `vecB = B_0(1 + x/1)veck` . A square loop of edge l and carrying a current i, is placed with its edges parallel to the xy axes. Find the magnitude of the net magnetic force experienced by the loop.


A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field B if the torque acting on the coil is 0.2 N m−1


Figure shows a metallic wire of resistance 0.20 Ω sliding on a horizontal, U-shaped metallic rail. The separation between the parallel arms is 20 cm. An electric current of 2.0 µA passes through the wire when it is slid at a rate of 20 cm s−1. If the horizontal component of the earth's magnetic field is 3.0 × 10−5 T, calculate the dip at the place.


Consider a 10-cm long piece of a wire which carries a current of 10 A. Find the magnitude of the magnetic field due to the piece at a point which makes an equilateral triangle with the ends of the piece.


A straight, how wire carries a current of 20 A. Another wire carrying equal current is placed parallel to it. If the force acting on a length of 10 cm of the second wire is 2.0 × 10−5 N, what is the separation between them? 


Answer the following question.
Two infinitely long straight wire A1 and A2 carrying currents I and 2I flowing in the same direction are kept' distance apart. Where should a third straight wire A3 carrying current 1.5 I be placed between A1 and A2 so that it experiences no net force due to A1 and A2? Does the net force acting on A3 depend on the current flowing through it?


If a current I is flowing in a straight wire parallel to x-axis and magnetic field is there in the y-axis then, ______.


Which of the following is true?

The magnetic moment of a circular coil carrying current is ______.

Equal currents are passing through two very long and straight parallel wires in the same direction. They will ______


The figure below are two long, parallel wires carrying current in the same direction such that I1 < I2.

  1. In which direction will wire I1 move?
  2. If the direction of the current I2 is reversed, in which direction will the wire I1 move now?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×