English

उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र (2, 2) हो तथा बिंदु (4, 5) से जाता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र (2, 2) हो तथा बिंदु (4, 5) से जाता है।

Sum

Solution

वृत्त की त्रिज्या = केंद्र (2, 2) और बिंदु (4, 5) के बीच की दूरी

= `sqrt((2 - 4)^2 + (2 - 5)^2)`

= `sqrt((2)^2 + (-3)^2)`

= `sqrt(4 + 9)`

= `sqrt13`

केंद्र (2, 2) और त्रिज्या = `sqrt13`

∴ वृत्त का समीकरण,

= (x - h)2 + (y - k)2 = r2

= (x − 2)2 + (y − 2)2 = `(sqrt(13))^2`

= (x2 − 4x + 4) + (y2 − 4y − 4) = 13

= x2 + y2 − 4x − 4y − 5 = 0

shaalaa.com
वृत्त
  Is there an error in this question or solution?
Chapter 11: शंकु परिच्छेद - प्रश्नावली 11.1 [Page 257]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 11 शंकु परिच्छेद
प्रश्नावली 11.1 | Q 14. | Page 257

RELATED QUESTIONS

4.5 सेमी त्रिज्या वाले वृत्त की दो स्पर्श रेखाएँ परस्पर समांतर हैं। उन स्पर्श रेखाओं के बीच की दूरी कितनी होगी कारण सहित लिखिए।


दिए गए प्रत्येक उप प्रश्न के लिए चार वैकल्पिक उत्तर दिए हैं। उनमें से उचित विकल्प चुनकर लिखिए।

क्रमशः 5.5 सेमी और 3.3 सेमी त्रिज्या वाले दो वृत्त परस्पर स्पर्श करते हैं। उनके केंद्रों के बीच की दूरी कितने सेमी होगी?


दिए गए प्रत्येक उप प्रश्न के लिए चार वैकल्पिक उत्तर दिए हैं। उनमें से उचित विकल्प चुनकर लिखिए।

परस्पर प्रतिच्छेदित करने वाले दो वृत्त एक दूसरे के केंद्र से होकर जाते हैं। यदि उनके केंद्रों के बीच की दूरी 12 सेमी हो, तो प्रत्येक वृत्त की त्रिज्या कितने सेमी होगी?


दिए गए प्रत्येक उप प्रश्न के लिए चार वैकल्पिक उत्तर दिए हैं। उनमें से उचित विकल्प चुनकर लिखिए।

‘यदि कोई वृत्त किसी समांतर चतुर्भुज की सभी भुजाओं को स्पर्श करता है, तो समांतर चतुर्भुज ______ होना चाहिए’, इस कथन में रिक्त स्थान में उचित शब्द लिखिए। 


दिए गए प्रत्येक उप प्रश्न के लिए चार वैकल्पिक उत्तर दिए हैं। उनमें से उचित विकल्प चुनकर लिखिए।

यदि किसी वृत्त के केंद्र से 12.5 सेमी की दूरी पर स्थित किसी बिंदु से उस वृत्त पर खींची गई स्पर्श रेखाखंड की लंबाई 12 सेमी हो, तो उस वृत्त का व्यास कितने सेमी होगा?


दिए गए प्रत्येक उप प्रश्न के लिए चार वैकल्पिक उत्तर दिए हैं। उनमें से उचित विकल्प चुनकर लिखिए।

रेख XZ व्यास वाले वृत्त के अन्तःभाग में एक बिंदु Y है। तो निम्नलिखित में से कितने कथन सत्य हैं?

(1) ∠XYZ न्यूनकोण नहीं हो सकता।

(2) ∠XYZ समकोण नहीं हो सकता।

(3) ∠XYZ अधिक कोण है।

(4) ∠XYZ के माप के संदर्भ में कोई निश्चित कथन नहीं किया जा सकता। 


संलग्न आकृति में रेख MN ‘O’ केंद्रवाले वृत्त की जीवा है। MN = 25, जीवा MN पर बिंदु L इस प्रकार है कि, ML = 9 और d(O, L) = 5 तो इस वृत्त की त्रिज्या ज्ञात कीजिए।

 


सिद्ध कीजिए कि वृत्त के कोई भी तीन बिंदु एक रैखिक नहीं होते।


निम्नलिखित प्रश्न में वृत्त का समीकरण ज्ञात कीजिए:

केंद्र (0, 2) और त्रिज्या 2 इकाई


निम्नलिखित प्रश्न में वृत्त का समीकरण ज्ञात कीजिए:

केंद्र (−2, 3) और त्रिज्या 4 इकाई


निम्नलिखित प्रश्न में वृत्त का समीकरण ज्ञात कीजिए:

केंद्र `(1/2, 1/4)` और त्रिज्या `1/12` इकाई


निम्नलिखित प्रश्न में वृत्त का समीकरण ज्ञात कीजिए:

केंद्र (−a, –b) और त्रिज्या `sqrt("a"^2 - "b"^2)` है।


निम्नलिखित प्रश्न में से वृत्त का केंद्र और त्रिज्या ज्ञात कीजिए: 

x2 + y2 – 4x – 8y – 45 = 0


बिंदुओं (4, 1) और (6, 5) से जाने वाले वृत्त का समीकरण कीजिए जिसका केंद्र रेखा 4x + y = 16 पर स्थित है।


बिंदुओं (2, 3) और (−1, 1) से जाने वाले वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र रेखा x – 3y – 11 = 0 पर स्थित है।


(0, 0) से होकर जाने वाले वृत्त का समीकरण ज्ञात कीजिए जो निर्देशांक्षों पर a और b अंत: खंड बनाता है।


त्रिज्या 5 के उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र x-अक्ष पर हो और जो बिंदु (2, 3) से जाता है।


यदि वृत्त की त्रिज्या 5 सेमी हो, तो उस वृत्त की सबसे बड़ी जीवा की लंबाई ज्ञात कीजिए।


‘O’ केंद्र वाले वृत्त की रेख AB जीवा है। AOC वृत्त का व्यास है। AT वृत्त के बिंदु A पर बनी स्पर्शरेखा है।

इस आधार पर नीचे दिए प्रश्नों के उत्तर लिखिए:

  1. दी गई जानकारी के आधार पर आकृति बनाइये।
  2. ∠CAT तथा ∠ABC की माप ज्ञात करने के लिए संबंधित प्रमेय का कथन लिखिए।
  3. क्या ∠CAT तथा ∠ABC एकरूप हैं? अपने उत्तर की पुष्टि कीजिये।

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×