English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

When the numerical value of the reaction quotient (Q) is greater than the equilibrium constant, in which direction does the reaction proceed to reach equilibrium? - Chemistry

Advertisements
Advertisements

Question

When the numerical value of the reaction quotient (Q) is greater than the equilibrium constant, in which direction does the reaction proceed to reach equilibrium?

One Line Answer

Solution

When Q > KC the reaction will proceed in the reverse direction, i.e, formation of reactants.

shaalaa.com
Equilibrium Constants
  Is there an error in this question or solution?
Chapter 8: Physical and Chemical Equilibrium - Evaluation [Page 26]

APPEARS IN

Samacheer Kalvi Chemistry - Volume 1 and 2 [English] Class 11 TN Board
Chapter 8 Physical and Chemical Equilibrium
Evaluation | Q II. 5. | Page 26

RELATED QUESTIONS

Which one of the following is incorrect statement ?


K1 and K2 are the equilibrium constants for the reactions respectively.

\[\ce{N2(g) + O2(g) <=>[K1] 2NO(g)}\]

\[\ce{NO(g) + O2(g) <=>[K2] 2NO2(g)}\]

What is the equilibrium constant for the reaction \[\ce{NO2(g) <=> 1/2 N2(g) + O2(g)}\]


In the equilibrium,

\[\ce{2A(g) <=> 2B(g) + C2(g)}\]

the equilibrium concentrations of A, B and C2 at 400 K are 1 × 10–4 M, 2.0 × 10–3 M, 1.5 × 10–4 M respectively. The value of KC for the equilibrium at 400 K is


In which of the following equilibrium, Kp and Kc are not equal?


For the formation of Two moles of SO3(g) from SO2 and O2, the equilibrium constant is K1. The equilibrium constant for the dissociation of one mole of SO3 into SO2 and O2 is


\[\ce{[CO(H2O)6]^2+ (aq) (pink) + 4Cl- (aq) <=> [CoCl4]^2- (aq) (blue) + 6 H2O (l)}\]

In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in color. On the basis of this information, which one of the following is true?


Derive a general expression for the equilibrium constant Kp and Kc for the reaction, \[\ce{3H2(g) + N2(g) <=> 2NH3(g)}\].


At particular temperature Kc = 4 × 10-2 for the reaction, \[\ce{H2S (g) <=> H2(g) +1/2 S2(g)}\]. Calculate the Kc for the following reaction.

\[\ce{2H2S (g) <=> 2H2 (g) + S2 (g)}\]


The equilibrium for the dissociation of XY2 is given as,

\[\ce{2 XY2 (g) <=> 2 XY (g) + Y2 (g)}\]

if the degree of dissociation x is so small compared to one. Show that 2 Kp = PX3 where P is the total pressure and Kp is the dissociation equilibrium constant of XY2.


The partial pressure of carbon dioxide in the reaction

\[\ce{CaCO3(s) <=> CaO(s) + CO2(g)}\] is 1.017 × 10-3 atm at 500°C. Calculate Kp at 600°C for the reaction. H for the reaction is 181 KJ mol-1 and does not change in the given range of temperature.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×