English

यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 60° है, तो OP = a3 होता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 60° है, तो OP = `asqrt(3)` होता है।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन असत्य है।

स्पष्टीकरण:

बिंदु P से दो स्पर्श रेखाएँ खींची गई हैं।

दिया गया है, OT = a

साथ ही, रेखा OP ∠RPT को समद्विभाजित करती है।

∴ ∠TPO = ∠RPO = 30°

साथ ही, OT ⊥ PT

⇒ ∠OTP = 90°

समकोण ΔOTP में,

sin 30° = `"OT"/"OP"`

⇒ `1/2 = "a"/"OP"`

⇒ OP = 2a

shaalaa.com
भूमिका: वृत्त
  Is there an error in this question or solution?
Chapter 9: वृत्त - प्रश्नावली 9.2 [Page 107]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 9 वृत्त
प्रश्नावली 9.2 | Q 6. | Page 107

RELATED QUESTIONS

एक वृत्त में कितनी स्पर्श रेखाएँ हो सकती हैं?


वृत्त को दो बिन्दुओं पर प्रतिच्छेद करने वाली रेखा को _____ कहते हैं।


वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिन्दु को _______ कहते हैं।


यदि दो संकेंद्रीय वृत्तों की त्रिज्याएँ 4 cm और 5 cm हैं, तो एक वृत्त की प्रत्येक उस जीवा की लंबाई, जो दूसरे वृत्त पर स्पर्श रेखा है, निम्नलिखित होगी ______।


किसी बिंदु P से, जो त्रिज्या 5 cm वाले एक वृत्त के केंद्र O से 13 cm की दूरी पर है, वृत्त पर दो स्पर्श रेखाएँ PQ और PR खींची गई हैं। तब चतुर्भुज PQOR का क्षेत्रफल ______ है।


किसी बाहरी बिंदु से एक वृत्त पर खींची गई स्पर्श रेखा की लंबाई सदैव उसकी त्रिज्या से बड़ी होती है।


यदि कई वृत्त एक रेखाखंड PQ के अंत बिंदुओं P और Q से होकर जाते हैं, तो उनके केंद्र PQ के लंब समद्विभाजक पर स्थित होते है।


AB एक वृत्त का व्यास है और AC उसकी एक जीवा इस प्रकार है कि ∠BAC = 30° है। यदि C पर खींची गई स्पर्श रेखा बढ़ाई गई AB से D पर मिलती है, तो BC = BD होगा।


मान लीजिए कि s उस त्रिभुज ABC के अर्ध-परिमाप को व्यक्त करता है, जिसमें BC = a, CA = b और AB = c है। यदि एक वृत्त भुजाओं BC, CA और AB को क्रमश : D, E और F पर स्पर्श करता है, तो सिद्ध कीजिए कि BD = s – b है। 


एक समकोण त्रिभुज ABC, जिसमें ∠B = 90° है, AB को व्यास मान कर एक वृत्त खींचा गया है, जो कर्ण AC को P पर प्रतिच्छेद करता है। सिद्ध कीजिए कि P पर वृत्त की स्पर्श रेखा BC को समद्विभाजित करती है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×