Advertisements
Advertisements
Question
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए।
- P(A ∩ B)
- P(A|B)
- P(A ∪ B)
Solution
(i) दिया गया P(B|A) = 0.4
⇒ `(P (A cap B))/(P(A)) = 0.4`
⇒ P(A ∩ B) = P (A) × 0.4
= 0.8 × 0.4
= 0.32
(ii) `P(A|B) = (P (AcapB))/(P(B))`
`= 0.32/0.5`
= 0.64
(iii) P(A ∪ B) = P (A) + P (B) - P (A ∩ B)
= 0.8 + 0.5 - 0.32
= 1.3 - 0.32
= 0.98
APPEARS IN
RELATED QUESTIONS
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |
P(A|B)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |
P(A|B)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |
P(B|A)
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक सिक्के को तीन बार उछाला गया है:
E: अधिकतम दो पट F: न्यूनतम दो पट
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
दो सिक्कों को एक बार उछाला गया है:
E : कोई पट प्रकट नहीं होता है, F : कोई चित प्रकट नहीं होता है।
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक पासे को तीन बार उछाला गया है:
E: तीसरी उछाल पर संख्या 4 प्रकट होना
F: पहली दो उछालों पर क्रमशः 6 तथा 5 प्रकट होना।
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E|F) और P(F|E)
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E|G) और P(G|E)
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E ∪ F|G) और P(E ∩ F|G)
एक प्रशिक्षक के पास 300 सत्य/असत्य प्रकार के आसान प्रश्न 200 सत्य/असत्य प्रकार के कठिन प्रश्न, 500 बहु-विकल्पीय प्रकार के आसान प्रश्न और 400 बहु-विकल्पीय प्रकार के कठिन प्रश्नों का संग्रह है। यदि प्रश्नों के संग्रह से एक प्रश्न यादृच्छया चुना जाता है, तो एक आसान प्रश्न की बहु-विकल्पीय होने की प्रायिकता क्या होगी?
एक पासे को फेंकने के परीक्षण पर विचार कीजिए। यदि पासे पर प्रकट संख्या 3 का गुणज है तो पासे को पुनः फेंकें और यदि कोई अन्य संख्या प्रकट हो तो एक सिक्के को उछालें। घटना 'न्यूनतम एक पासे पर संख्या 3 प्रकट होना’ दिया गया है तो घटना ‘सिक्के पर पट प्रकट होने' की सप्रतिबंध प्रायिकता ज्ञात कीजिए।
यदि P(A) =`1/2`, P(B) = 0 तब P(A|B) है:
यदि A और B दो घटनाएँ इस प्रकार हैं कि P(A|B) = P(B|A) ≠ 0 तब ______.
A और B इस प्रकार घटनाएँ हैं कि P(A) ≠ 0. P(B|A) ज्ञात कीजिए यदि A, समुच्चय B का उपसमुच्चय है।
एक दंपति के दो बच्चे हैं, दोनों बच्चों के लड़का होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हैं कि दोनों बच्चों में से कम से कम एक बच्चा लड़का है।
एक दंपति के दो बच्चे हैं, दोनों बच्चों के लड़की होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात है कि बड़ा बच्चा लड़की है।
एक बाधा दौड़ में एक प्रतियोगी को 10 बाधाएँ पार करनी है इसकी प्रायिकता कि वह प्रत्येक बाधा को पार कर लेगा `5/6` है। इसकी क्या प्रायिकता है कि वह 2 से कम बाधाओं को गिरा देगा (नहीं पार कर पाएगा)?
यदि A और B दो ऐसी घटनाएँ हैं कि P(A) ≠ 0 और `P(B|A)` = 1, तब ______.
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक सिक्के को तीन बार उछाला गया है:
E: तीसरी उछाल पर चित्त, F: पहली दोनों उछालों पर चित्त
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक सिक्के को तीन बार उछाला गया है:
E : न्यूनतम दो चित्त, F : अधिकतम एक चित्त