Advertisements
Advertisements
Question
यदि sin θ = cos θ हो, तो θ का मान कितना होगा?
Solution
sin θ = cos θ ...(दत्त)
परंतु, sin θ = cos (90 – θ) ...(त्रिकोणमितीय सर्वसमिका)
∴ cos θ = cos (90 – θ)
∴ θ = 90 – θ
∴ 2θ = 90°
∴ θ = 45°
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए।
cos2θ(1 + tan2θ) = 1
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2 = sinA cosA`
सिद्ध कीजिए।
sec4A (1 - sin4A) - 2tan2A = 1
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
सिद्ध कीजिए।
sec6x - tan6x = 1 + 3sec2x × tan2x
सिद्ध कीजिए।
`(sintheta - costheta + 1)/(sintheta + costheta - 1) = 1/(sectheta - tantheta)`
नीचे दिए गए बहुवैकल्पिक प्रश्न के उत्तर का सही विकल्प चुनकर लिखिए।
1 + tan2θ = कितना?
θ का निरसन कीजिए:
x = r cosθ तथा y = r sinθ
sin2θ + cos2θ का मान ज्ञात कीजिए।
हल:
Δ ABC में, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(पायथागोरस प्रमेय)
दोनों पक्षों में AC2 से भाग देने पर,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परन्तु `"AB"/"AC" = square और "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`