हिंदी

Introduction to Number Systems - Hexadecimal Number System

Advertisements

Topics

  • Introduction to Hexadecimal Number System
  • Hex to decimal conversion
  • Decimal to Hexadecimal conversion
  • Hex to Binary and Binary to Hex conversion 

Introduction to Hexadecimal Number System

The hexadecimal number system It consists of 16 unique symbols (0–9, A–F) and is called the base 16 system. Each alphanumeric digit is represented as a group of 4 binary digits because 4 bits (24 = 16) are sufficient to represent 16 alphanumeric symbols Hexadecimal numbers are widely used in microprocessor work and can be easily converted to binary, with each hex digit represented by a four-bit binary number. 

Hex to decimal conversion

The decimal equivalent of a hexadecimal number equals the sum of all hexadecimal digits multiplied by their weights. In the hexadecimal number system, the weight of each position of digit is in powers of 16

1) (2  C  6   E)16  

          2                    C                    6                E

=   (2 x 163)   +   (C x 162)  +    (6 x 161) +  (E x 160)

=  (2 x 4096)  + (12 x 256) +   (6 x 16)   +   (14 x 1)

=      8192      +    3072       +        96       +        14

2) (3A.2F)16  =  3 x 16+ 10 x 16+ 2 x 16-1 + 15 x 16-2

                      = `48 + 10 + 2/16 + 15/16^2` 

                      =  (58.1836)10

Decimal to Hexadecimal conversion

For conversion from decimal to hexadecimal, we can keep by dividing the decimal number by 16 (for the integer part) and multiplying by 16 for the fractional part. For the integer part, remainders are arranged in reverse order, and for the fractional part, carries are arranged in forward order.

1) Integer part 
(928)10 

   

   (928)10    =   (3A0)16 

2) Fractional part  
   0.5    
 ×16  
   8.0 
     ↓           
     
8            (0.5)10   =  (0.8)16 

Therefore, (95.5)10  =  (5F.8)16 

Hex to Binary and Binary to Hex conversion

Hexadecimal to Binary Conversion:

To convert a hexadecimal number into a binary number, convert each hex digit into a 4-bit binary code, just like 8421 BCD

1) Convert (5AD)16  in to binary 

 =     5        A      D

 =  0101  1010  1101

2) Convert (C9F.2A)16 in to binary 

=    C        9         F         2         A

= 1100   1001   1111 .  0010   1010

Binary to Hexadecimal Conversion: 

Binary number into a hexadecimal number the group of 4-bits, starting from LSB and moving towards MSB for integer part and then replacing each group of four bits by its hexadecimal representation.

1) Convert (110100011111)2  in to hex 

= 1101   0001    1111

=    D       1           F

2) Convert (11110010.1110)2 in to hex

= 1111    0010 .  1110

=    F         2    .     E

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisements
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×