हिंदी

A (–3, 4), B (3, –1) and C (–2, 4) are the vertices of a triangle ABC. Find the length of line segment AP, where point P lies inside BC, such that BP : PC = 2 : 3. - Mathematics

Advertisements
Advertisements

प्रश्न

A (–3, 4), B (3, –1) and C (–2, 4) are the vertices of a triangle ABC. Find the length of line segment AP, where point P lies inside BC, such that BP : PC = 2 : 3.

योग

उत्तर

BP : PC = 2 : 3

Co-ordinates of P are

`((2 xx (-2) + 3 xx 3)/(2 + 3),(2 xx 4 + 3 xx (-1))/(2 + 3))`

= `((-4 + 9)/5, (8 - 3)/5)`

= (1, 1)  ...(i)

Using distance formula, we have:

`AP = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

Let A (–3 , 4)  x1 = –3, y1 = 4,

(1, 1) x2 = 1, y2 = 1   ...[From (i) we get]

`AP = sqrt((1 + 3)^2 + (1 - 4)^2)`  

= `sqrt(16 + 9)`

= `sqrt(25)`

= 5 units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Section and Mid-Point Formula - Exercise 13 (A) [पृष्ठ १७७]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 13 Section and Mid-Point Formula
Exercise 13 (A) | Q 20 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×