हिंदी

A Circle is Inscribed in an Equilateral Triangle Abc is Side 12 Cm, Touching Its Sides (The Following Figure). Find the Radius of the Inscribed Circle and the Area of the Shaded Part. - Mathematics

Advertisements
Advertisements

प्रश्न

A circle is inscribed in an equilateral triangle ABC is side 12 cm, touching its sides (the following figure). Find the radius of the inscribed circle and the area of the shaded part.

 

योग

उत्तर

We have to find the area of the shaded portion. We have`ΔABC`which is an equilateral triangle and`AB=12 cm`.

We have O as the incentre and OP, OQ and OR are equal.

So,

`ar(Δ ABC)=ar(ΔOAB)+ar(ΔOBC)+ae(ΔOCA)`

Thus,

`sqrt3/4(12)^2=3(1/2(12))(r)`

`r=(36sqrt3)/18 cm`

`=2sqrt3 cm`

So area of the shaded region,

`= ar (Δ ABC)-Area of the circle`

`=sqrt3/4(12)^2-22/7(2sqrt3)^2`

`=(62.35-37.71)cm^2`

`=24.64 cm^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Areas Related to Circles - Exercise 13.4 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 13 Areas Related to Circles
Exercise 13.4 | Q 24 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×