हिंदी

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each units of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufactured per month to maximize profit? How much is the maximum profit?

आलेख
योग

उत्तर

Let the firm manufactures x units of item A and y units of item B.

Firm can make profit of ₹ 20 per unit of A and ₹ 30 per unit of B.

Hence, the total profit is z = ₹ (20x + 30y)

This is the objective function which is to be maximized. The constraints are as per the following table:

  Item A (x) Item A (y) Total supply
Motor 3 2 210
Transformer 2 4 300

From the table, the constraints are

3x + 2y ≤ 210, 2x + 4y ≤ 300

Since, number of items cannot be negative, x ≥ 0, y ≥ 0.

Hence, the mathematical formulation of given LPP is :

Maximize z = 20x + 30y, subject to

3x + 2y ≤ 210, 2x + 4y ≤ 300, x ≥ 0, y ≥ 0

We draw the lines AB and CD whose equations are

3x + 2y = 210 and 2x + 4y = 300 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB 3x + 2y = 210 A(70, 0) B(0, 150) origin side of line AB
CD 2x + 4y = 300 C(150, 0) D(0, 75) origin side of line CD

The feasible region is OAPDO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), A (70, 0), P and D (0, 75).
P is the point of intersection of the lines

2x + 4y = 300      ....(1)

and 3x + 2y = 210       ....(2)

Multiplying equation (2) by 2, we get

6x + 4y = 420 

Subtracting equation (1) from this equation, we get

∴ 4x = 120 

∴ x = 30

Substituting x = 30 in (1), we get

2(30) + 4y = 300

∴ 4y = 240

∴ y = 60

∴ P is (30, 60)

The values of the objective function z = 20x + 30y at these vertices are

z(O) = 20(0) + 30(0) = 0 + 0 = 0

z(A) = 20(70) + 30(0) = 1400 + 0 = 1400

z(P) = 20(30) + 30(60) = 600 + 1800 = 2400

z(D) = 20(0) + 30(75) = 0 + 2250 = 2250

∴ z has the maximum value 2400 when x = 30 and y = 60

Hence, the firm should manufactured 30 units of item A and 60 units of item B to get the maximum profit of  ₹ 2400.

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Programming - Miscellaneous exercise 7 [पृष्ठ २४५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Linear Programming
Miscellaneous exercise 7 | Q 14) | पृष्ठ २४५

संबंधित प्रश्न

Find the feasible solution of the following inequation:

2x + 3y ≤ 6, x + y ≥ 2, x ≥ 0, y ≥ 0


Find the feasible solution of the following inequations:

x - 2y ≤ 2, x + y ≥ 3, - 2x + y ≤ 4, x ≥ 0, y ≥ 0


A company produces two types of articles A and B which requires silver and gold. Each unit of A requires 3 gm of silver and 1 gm of gold, while each unit of B requires 2 gm of silver and 2 gm of gold. The company has 6 gm of silver and 4 gm of gold. Construct the inequations and find feasible solution graphically.


A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 in magazines A and B per copy. These are processed on three Machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II, and 2 hours on machine III. Magazine B requires 3 hours on machine I, 2 hours on machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, and 60 hours per week respectively. Formulate the LPP to determine weekly production of magazines A and B, so that the total profit is maximum.


A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on Machine M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. Formulate the LPP to maximize the profit, if he operates the machine M1, for almost 10 hours a day and machine M2 for almost 12 hours a day.


The company makes concrete bricks made up of cement and sand. The weight of a concrete brick has to be at least 5 kg. Cement costs ₹ 20 per kg and sand costs of ₹ 6 per kg. Strength consideration dictates that a concrete brick should contain minimum 4 kg of cement and not more than 2 kg of sand. Form the L.P.P. for the cost to be minimum.


Select the appropriate alternatives for each of the following question:

The value of objective function is maximum under linear constraints


Objective function of LPP is ______.


Solve the following LPP:

Maximize z = 5x1 + 6x2 subject to 2x1 + 3x2 ≤ 18, 2x1 + x2 ≤ 12, x1 ≥ 0, x2 ≥ 0.


Solve the following LPP:

Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.


Solve each of the following inequations graphically using XY-plane:

4x - 18 ≥ 0


A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 on magazines A and B per copy. These are processed on three machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II and 2 hours on Machine III. Magazine B requires 3 hours on Machine I, 2 hours on Machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, 60 hours per week respectively. Formulate the Linear programming problem to maximize the profit.


Choose the correct alternative :

The corner points of the feasible region given by the inequations x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0, are


If the corner points of the feasible region are (0, 0), (3, 0), (2, 1) and `(0, 7/3)` the maximum value of z = 4x + 5y is ______.


Choose the correct alternative :

The half plane represented by 4x + 3y ≥ 14 contains the point


Fill in the blank :

The optimal value of the objective function is attained at the _______ points of feasible region.


Maximize z = 10x + 25y subject to x + y ≤ 5, 0 ≤ x ≤ 3, 0 ≤ y ≤ 3


Minimize z = 7x + y subjected to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0


Constraints are always in the form of ______ or ______.


The constraint that in a particular XII class, number of boys (y) are less than number of girls (x) is given by ______


Solve the following linear programming problems by graphical method.

Maximize Z = 6x1 + 8x2 subject to constraints 30x1 + 20x2 ≤ 300; 5x1 + 10x2 ≤ 110; and x1, x2 ≥ 0.


Solve the following linear programming problems by graphical method.

Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0.


Solve the following linear programming problems by graphical method.

Maximize Z = 20x1 + 30x2 subject to constraints 3x1 + 3x2 ≤ 36; 5x1 + 2x2 ≤ 50; 2x1 + 6x2 ≤ 60 and x1, x2 ≥ 0.


Solve the following linear programming problem graphically.

Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.


The LPP to maximize Z = x + y, subject to x + y ≤ 1, 2x + 2y ≥ 6, x ≥ 0, y ≥ 0 has ________.


The optimal value of the objective function is attained at the ______ of feasible region.


The set of feasible solutions of LPP is a ______.


Solution which satisfy all constraints is called ______ solution.


For the following shaded region, the linear constraint are:


Solve the following problems by graphical method:

Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0 y ≥ 0


Solve the following LPP by graphical method:

Maximize: z = 3x + 5y Subject to:  x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0


Two kinds of foods A and B are being considered to form a weekly diet. The minimum weekly requirements of fats, Carbohydrates and proteins are 12, 16 and 15 units respectively. One kg of food A has 2, 8 and 5 units respectively of these ingredients and one kg of food B has 6, 2 and 3 units respectively. The price of food A is Rs. 4 per kg and that of food B is Rs. 3 per kg. Formulate the L.P.P. and find the minimum cost.


Sketch the graph of the following inequation in XOY co-ordinate system.

x + y ≤ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×