Advertisements
Advertisements
प्रश्न
A potential difference (V) is applied across a conductor of length 'L' and cross-sectional area 'A'.
How will the drift velocity of electrons and the current density be affected if another identical conductor of the same material were connected in series with the first conductor? Justify your answers.
उत्तर
We know,
Drift velocity, `v_d = (eE)/mtau ⇒ (eV)/(mL)tau`
Current density, J = `I/A`
If another conductor of the same length will be connected in series. I will remain the same and my potential will become half. So, drift velocity will become half and current density will remain the same.
APPEARS IN
संबंधित प्रश्न
Derive an expression for drift velocity of free electrons.
Write its (‘mobility’ of charge carriers) S.I. unit
Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area 2.5 × 10−7 m2 carrying a current of 1.8 A. Assume the density of conduction electrons to be 9 × 1028 m−3.
The number density of free electrons in a copper conductor is 8.5 × 1028 m−3. How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is 2.0 × 10−6 m2 and it is carrying a current of 3.0 A.
(a) drift speed
(b) current density
(c) electric current
(d) electric field
On the basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free electrons and relaxation time. On what factors does resistivity of a conductor depend?
A current of 1.0 A exists in a copper wire of cross-section 1.0 mm2. Assuming one free electron per atom, calculate the drift speed of the free electrons in the wire. The density of copper is 9000 kg m–3.
Amount of charge in coulomb required to deposit one gram equivalent of substance by electrolysis is:-
An electric bulb.is rated 220 v and 100 watt power consumed by it when operated on 'no volt is:-