हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Simple Pendulum of Length 40 Cm is Taken Inside a Deep Mine. Assume for the Time Being that the Mine is 1600 Km Deep. - Physics

Advertisements
Advertisements

प्रश्न

A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.

योग

उत्तर

It is given that:
Length of the pendulum, l = 40 cm = 0.4 m
Radius of the earth, R = 6400 km
Acceleration due to gravity on the earth's surface, `g = 9.8 "ms"^(- 2)`

Let

\[g'\] be the acceleration due to gravity at a depth of 1600 km from the surface of the earth. 
Its value is given by,

\[g' = g\left( 1 - \frac{d}{R} \right)\] \[\text{where  d  is  the  depth  from  the  earth  surfce, }\] \[\text { R  is  the  radius  of  earth,   and }\] 

\[\text {g  is  acceleration  due  to  gravity .}\]

\[\text{ On  substituting  the  respective  values,   we  get: }\] \[  g' = 9 . 8\left( 1 - \frac{1600}{6400} \right)\] 

\[= 9 . 8\left( 1 - \frac{1}{4} \right)\] 

\[= 9 . 8 \times \left( \frac{3}{4} \right) = 7 . 35   {\text{ms}}^{- 2}\]

Time period is given as,

\[T = 2\pi\sqrt{\left( \frac{l}{g'} \right)}\]

\[\Rightarrow T = 2\pi\sqrt{\left( \frac{0 . 4}{7 . 35} \right)}\] 

\[ \Rightarrow T = 2 \times 3 . 14 \times 0 . 23\] 

\[             = 1 . 465 \approx 1 . 47  s\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 40 | पृष्ठ २५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A particle in S.H.M. has a period of 2 seconds and amplitude of 10 cm. Calculate the acceleration when it is at 4 cm from its positive extreme position.


The average displacement over a period of S.H.M. is ______.

(A = amplitude of S.H.M.)


A particle executes simple harmonic motion Let P be a point near the mean position and Q be a point near an extreme. The speed of the particle at P is larger than the speed at Q. Still the particle crosses Pand Q equal number of times in a given time interval. Does it make you unhappy?


Can a pendulum clock be used in an earth-satellite?


A platoon of soldiers marches on a road in steps according to the sound of a marching band. The band is stopped and the soldiers are ordered to break the steps while crossing a bridge. Why?


A student says that he had applied a force \[F = - k\sqrt{x}\] on a particle and the particle moved in simple harmonic motion. He refuses to tell whether k is a constant or not. Assume that he was worked only with positive x and no other force acted on the particle.


The motion of a particle is given by x = A sin ωt + B cos ωt. The motion of the particle is


A pendulum clock keeping correct time is taken to high altitudes,


Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.


Which of the following quantities are always zero in a simple harmonic motion?
(a) \[\vec{F} \times \vec{a} .\]

(b) \[\vec{v} \times \vec{r} .\]

(c) \[\vec{a} \times \vec{r} .\]

(d) \[\vec{F} \times \vec{r} .\]


A simple pendulum of length l is suspended through the ceiling of an elevator. Find the time period of small oscillations if the elevator (a) is going up with and acceleration a0(b) is going down with an acceleration a0 and (c) is moving with a uniform velocity.


A simple pendulum of length l is suspended from the ceiling of a car moving with a speed v on a circular horizontal road of radius r. (a) Find the tension in the string when it is at rest with respect to the car. (b) Find the time period of small oscillation.


In a simple harmonic oscillation, the acceleration against displacement for one complete oscillation will be __________.


Define the frequency of simple harmonic motion.


What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true.


Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB" cos φ = sin^2 φ`

and also discuss the special cases when

  1. φ = 0
  2. φ = π
  3. φ = `π/2`
  4. φ = `π/2` and A = B
  5. φ = `π/4`

Note: when a particle is subjected to two simple harmonic motions at right angle to each other the particle may move along different paths. Such paths are called Lissajous figures.


A spring is stretched by 5 cm by a force of 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is ______.


Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, and c are positive constants?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×