हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Sphere of Radius 1.00 Cm is Placed in the Path of a Parallel Beam of Light of Large Aperture. the Intensity of the Light is 0.5 W Cm−2. If the Sphere Completely Absorbs the Radiation Falling on It - Physics

Advertisements
Advertisements

प्रश्न

A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, find the force exerted by the light beam on the sphere.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

योग

उत्तर

Given:-

Radius of the sphere, r = 1 cm

Intensity of light, I = 0.5 Wcm−2

Let A be the effective area of the sphere perpendicular to the light beam.

So, force exerted by the light beam on the sphere is given by,

`F = P/c = (AI)/c`

`F = (pi xx (1)^2 xx 0.5)/(3 xx 10^8)`

`= (3.14 xx 0.5)/(3 xx 10^8)`

`= 0.523 xx 10^-8`

`= 5.2 xx 10^-9  "N"`

shaalaa.com
Experimental Study of Photoelectric Effect
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 10 | पृष्ठ ३६५

संबंधित प्रश्न

Ultraviolet light of wavelength 2271 Å from a 100 W mercury source irradiates a photo-cell made of molybdenum metal. If the stopping potential is −1.3 V, estimate the work function of the metal. How would the photo-cell respond to a high intensity (∼105 W m−2) red light of wavelength 6328 Å produced by a He-Ne laser?


Draw graphs showing variation of photoelectric current with applied voltage for two incident radiations of equal frequency and different intensities. Mark the graph for the radiation of higher intensity.


Should the energy of a photon be called its kinetic energy or its internal energy?


It is found that yellow light does not eject photoelectrons from a metal. Is it advisable to try with orange light or with green light?


It is found that photosynthesis starts in certain plants when exposed to sunlight, but it does not start if the plants are exposed only to infrared light. Explain.


Two photons of 


The equation E = pc is valid


The work function of a metal is hv0. Light of frequency v falls on this metal. Photoelectric effect will take place only if


When stopping potential is applied in an experiment on photoelectric effect, no photoelectric is observed. This means that


Photoelectric effect supports quantum nature of light because
(a) there is a minimum frequency below which no photoelectrons are emitted
(b) the maximum kinetic energy of photoelectrons depends only on the frequency of light and not on its intensity
(c) even when the metal surface is faintly illuminated the photoelectrons leave the surface immediately
(d) electric charge of the photoelectrons is quantised


In which of the following situations, the heavier of the two particles has smaller de Broglie wavelength? The two particles
(a) move with the same speed
(b) move with the same linear momentum
(c) move with the same kinetic energy
(d) have fallen through the same height


An atom absorbs a photon of wavelength 500 nm and emits another photon of wavelength 700 nm. Find the net energy absorbed by the atom in the process.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Calculate the number of photons emitted per second by a 10 W sodium vapour lamp. Assume that 60% of the consumed energy is converted into light. Wavelength of sodium light = 590 nm

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In an experiment on photoelectric effect, the stopping potential is measured for monochromatic light beams corresponding to different wavelengths. The data collected are as follows:-

Wavelength (nm):         350   400   450   500   550
Stopping potential (V): 1.45  1.00  0.66  0.38  0.16

Plot the stopping potential against inverse of wavelength (1/λ) on a graph paper and find (a) Planck's constant (b) the work function of the emitter and (c) the threshold wavelength.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The figure is the plot of stopping potential versus the frequency of the light used in an experiment on photoelectric effect. Find (a) the ratio h/e and (b) the work function.


Define the term: stopping potential in the photoelectric effect.


The work function for a metal surface is 4.14 eV. The threshold wavelength for this metal surface is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×