हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

In an Experiment on Photoelectric Effect, the Stopping Potential is Measured for Monochromatic Light Beams Corresponding to Different Wavelengths. the Data Collected Are as Follows: - Physics

Advertisements
Advertisements

प्रश्न

In an experiment on photoelectric effect, the stopping potential is measured for monochromatic light beams corresponding to different wavelengths. The data collected are as follows:-

Wavelength (nm):         350   400   450   500   550
Stopping potential (V): 1.45  1.00  0.66  0.38  0.16

Plot the stopping potential against inverse of wavelength (1/λ) on a graph paper and find (a) Planck's constant (b) the work function of the emitter and (c) the threshold wavelength.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

योग

उत्तर

(a)

When λ = 350, Vs = 1.45

and when λ = 400 ,  `V_s = 1`

`therefore (hc)/350 = w + 1.45  .......(1)`

and `(hc)/400 = w + 1       .......(2)`

Subtracting (2) from (1) and solving to get the value of h, we get :

`h = 4.2 xx 10^-15  "eV-s"`


(b) Now, work function,

`w = 12240/350 - 1.45 = 2.15  "ev"`


(c) `w = (nc)/λ`

`⇒ λ_"threshold" = (hc)/w`

`⇒ λ_"threshold" = 1240/1.15`

`⇒ λ_"threshold" = 576.8  "nm"`

shaalaa.com
Experimental Study of Photoelectric Effect
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 19 | पृष्ठ ३६५

संबंधित प्रश्न

The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?


Every metal has a definite work function. Why do all photoelectrons not come out with the same energy if incident radiation is monochromatic? Why is there an energy distribution of photoelectrons?


Draw graphs showing variation of photoelectric current with applied voltage for two incident radiations of equal frequency and different intensities. Mark the graph for the radiation of higher intensity.


Is it always true that for two sources of equal intensity, the number of photons emitted in a given time are equal?


Can a photon be deflected by an electric field? Or by a magnetic field?


When the intensity of a light source in increased,
(a) the number of photons emitted by the source in unit time increases
(b) the total energy of the photons emitted per unit time increases
(c) more energetic photons are emitted
(d) faster photons are emitted


If the wavelength of light in an experiment on photoelectric effect is doubled,
(a) photoelectric emission will not take place
(b) photoelectric emission may or may not take place
(c) the stopping potential will increase
(d) the stopping potential will decrease


The collector plate in an experiment on photoelectric effect is kept vertically above the emitter plate. A light source is put on and a saturation photocurrent is recorded. An electric field is switched on that has a vertically downward direction.


Calculate the number of photons emitted per second by a 10 W sodium vapour lamp. Assume that 60% of the consumed energy is converted into light. Wavelength of sodium light = 590 nm

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A beam of white light is incident normally on a plane surface absorbing 70% of the light and reflecting the rest. If the incident beam carries 10 W of power, find the force exerted by it on the surface.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Define the terms "stopping potential' and 'threshold frequency' in relation to the photoelectric effect. How does one determine these physical quantities using Einstein's equation?


In photoelectric effect, the photoelectric current started to flow. This means that the frequency of incident radiations is ______.


Do all the electrons that absorb a photon come out as photoelectrons?


Consider a 20 W bulb emitting light of wavelength 5000 Å and shining on a metal surface kept at a distance 2 m. Assume that the metal surface has work function of 2 eV and that each atom on the metal surface can be treated as a circular disk of radius 1.5 Å.

  1. Estimate no. of photons emitted by the bulb per second. [Assume no other losses]
  2. Will there be photoelectric emission?
  3. How much time would be required by the atomic disk to receive energy equal to work function (2 eV)?
  4. How many photons would atomic disk receive within time duration calculated in (iii) above?
  5. Can you explain how photoelectric effect was observed instantaneously?

The work function for a metal surface is 4.14 eV. The threshold wavelength for this metal surface is ______.


Why it is the frequency and not the intensity of the light source that determines whether the emission of photoelectrons will occur or not? Explain.


How would the stopping potential for a given photosensitive surface change if the intensity of incident radiation was decreased? Justify your answer.


  • Assertion (A): For the radiation of a frequency greater than the threshold frequency, the photoelectric current is proportional to the intensity of the radiation.
  • Reason (R): Greater the number of energy quanta available, the greater the number of electrons absorbing the energy quanta and the greater the number of electrons coming out of the metal.

What is the effect of threshold frequency and stopping potential on increasing the frequency of the incident beam of light? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×