हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Photoelectric Effect Supports Quantum Nature of Light Because - Physics

Advertisements
Advertisements

प्रश्न

Photoelectric effect supports quantum nature of light because
(a) there is a minimum frequency below which no photoelectrons are emitted
(b) the maximum kinetic energy of photoelectrons depends only on the frequency of light and not on its intensity
(c) even when the metal surface is faintly illuminated the photoelectrons leave the surface immediately
(d) electric charge of the photoelectrons is quantised

संक्षेप में उत्तर

उत्तर

(a) there is a minimum frequency below which no photoelectrons are emitted
(b) the maximum kinetic energy of photoelectrons depends only on the frequency of light and not on its intensity
(c) even when the metal surface is faintly illuminated the photoelectrons leave the surface immediately

Photoelectric effect can be explained on the basis of quantum nature of light. According to the quantum nature of light, energy in light is not uniformly spread. It is contained in packets or quanta known as photons.
Energy of a photon, E = hv, where h is Planck's constant and v is the frequency of light.
Above a particular frequency, called threshold frequency, energy of a photon is sufficient to emit an electron from the metal surface and below which, no photoelectron is emitted, as the energy of the photon is low. Hence, option (a) supports the quantum nature of light.
Now, kinetic energy of an electron,

`K = hv_0 - varphi`

Thus, kinetic energy of a photoelectron depends only on the frequency of light (or energy). This shows that if the intensity of light is increased, it only increases the number of photons and not the energy of photons. Kinetic energy of photons can be increased by increasing the frequency of light or by increasing the energy of photon, which supports E = hv and, hence, the quantum nature of light. Hence, option (b) also supports the quantum nature of light.

Photoelectrons are emitted from a metal surface even if the metal surface is faintly illuminated; it means that less photons will interact with the electrons. However, few electrons absorb energy from the incident photons and come out from the metal. This shows the quantum nature of light. Hence, (c) also supports the quantum nature of light.

Electric charge of the photoelectrons is quantised; but this statement does not support the quantum nature of light.

shaalaa.com
Experimental Study of Photoelectric Effect
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Photoelectric Effect and Wave-Particle Duality - MCQ [पृष्ठ ३६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 20 Photoelectric Effect and Wave-Particle Duality
MCQ | Q 2 | पृष्ठ ३६४

संबंधित प्रश्न

Monochromatic radiation of wavelength 640.2 nm (1 nm = 10−9 m) from a neon lamp irradiates photosensitive material made of caesium on tungsten. The stopping voltage is measured to be 0.54 V. The source is replaced by an iron source and its 427.2 nm line irradiates the same photo-cell. Predict the new stopping voltage.


What is the speed of a photon with respect to another photon if (a) the two photons are going in the same direction and (b) they are going in opposite directions?


Can a photon be deflected by an electric field? Or by a magnetic field?


It is found that photosynthesis starts in certain plants when exposed to sunlight, but it does not start if the plants are exposed only to infrared light. Explain.


If an electron has a wavelength, does it also have a colour?


Let nr and nb be the number of photons emitted by a red bulb and a blue bulb, respectively, of equal power in a given time.


The work function of a metal is hv0. Light of frequency v falls on this metal. Photoelectric effect will take place only if


A point source causes photoelectric effect from a small metal plate. Which of the following curves may represent the saturation photocurrent as a function of the distance between the source and the metal?


Calculate the momentum of a photon of light of wavelength 500 nm.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Calculate the number of photons emitted per second by a 10 W sodium vapour lamp. Assume that 60% of the consumed energy is converted into light. Wavelength of sodium light = 590 nm

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, find the force exerted by the light beam on the sphere.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In an experiment on photoelectric effect, the stopping potential is measured for monochromatic light beams corresponding to different wavelengths. The data collected are as follows:-

Wavelength (nm):         350   400   450   500   550
Stopping potential (V): 1.45  1.00  0.66  0.38  0.16

Plot the stopping potential against inverse of wavelength (1/λ) on a graph paper and find (a) Planck's constant (b) the work function of the emitter and (c) the threshold wavelength.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a monochromatic beam is 1.2 × 1015 times per second. Find the maximum kinetic energy of the photoelectrons when this light falls on a metal surface whose work function is 2.0 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a light wave is given by  `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.


Define the term: threshold frequency


On the basis of the graphs shown in the figure, answer the following questions :

(a) Which physical parameter is kept constant for the three curves?

(b) Which is the highest frequency among v1, v2, and v3?


Explain how does (i) photoelectric current and (ii) kinetic energy of the photoelectrons emitted in a photocell vary if the frequency of incident radiation is doubled, but keeping the intensity same?

Show the graphical variation in the above two cases.


In photoelectric effect the photo current ______.


Two monochromatic beams A and B of equal intensity I, hit a screen. The number of photons hitting the screen by beam A is twice that by beam B. Then what inference can you make about their frequencies?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×