हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Tightly-wound Solenoid of Radius a and Length L Has N Turns per Unit Length. It Carries an Electric Current I. Consider a Length Dx Of the Solenoid at a Distance X From One End. - Physics

Advertisements
Advertisements

प्रश्न

A tightly-wound solenoid of radius a and length l has n turns per unit length. It carries an electric current i. Consider a length dx of the solenoid at a distance x from one end. This contains n dx turns and may be approximated as a circular current i n dx. (a) Write the magnetic field at the centre of the solenoid due to this circular current. Integrate this expression under proper limits to find the magnetic field at the centre of the solenoid. (b) verify that if l >> a, the field tends to B = µ0ni and if a >> l, the field tends to `B =(mu_0nil)/(2a)` . Interpret these results.

टिप्पणी लिखिए

उत्तर

(a) Given:
Current in the loop or circular current = indx
Radius of the loop having circular current  = r
Distance of the centre of the solenoid from the circular current = `l /2 - x`
Magnetic field at the centre due to the circular loop,

`B = (mu_0)/2 (ir^2)/((x^2 + r^2)3/3)`

`B = intdB `

`=int_0^1 (mu_0a^2 ni dx)/(4pi[a^2 + (l - 2x)^2]3/2)`

\[ =  \int\limits_0^1 \frac{\mu_0 ni a^2 dx}{4\pi a^3 \left[ 1 + \left( \frac{l - 2x}{a} \right)^2 \right]^{3/2}} =\frac{\mu_0 ni}{4\pi a} \int^1_0 \frac{dx}{\left[ 1 + \left( \frac{l - 2x}{a} \right)^2 \right]^{3/2}}=\frac{\mu_0 ni}{4\pi a}.\frac{4\pi a}{\sqrt{1 + \left( \frac{2a}{l} \right)}}=\frac{\mu_0 ni}{\sqrt{1 + \left( \frac{2a}{l} \right)^2}}\]

(b) When a > > l, \[B = \frac{\mu_0 ni}{2a}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Magnetic Field due to a Current - Exercises [पृष्ठ २५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 13 Magnetic Field due to a Current
Exercises | Q 57 | पृष्ठ २५३

संबंधित प्रश्न

Derive the expression for the magnetic field due to a solenoid of length ‘2l’, radius ‘a’ having ’n’ number of turns per unit length and carrying a steady current ‘I’ at a point
on the axial line, distance ‘r’ from the centre of the solenoid. How does this expression compare with the axial magnetic field due to a bar magnet of magnetic moment ‘m’?


Define the term self-inductance of a solenoid.


Obtain the expression for mutual inductance of a pair of long coaxial solenoids each of length l and radii r1 and r2 (r2 >> r1). Total number of turns in the two solenoids are N1 and N2, respectively.


A closely wound solenoid 80 cm long has 5 layers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm. If the current carried is 8.0 A, estimate the magnitude of B inside the solenoid near its centre.


A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic.


Define self-inductance of a coil.


Obtain the expression for the magnetic energy stored in an inductor of self-inductance L to build up a current I through it.


A wire AB is carrying a steady current of 10 A and is lying on the table. Another wire CD carrying 6 A is held directly above AB at a height of 2 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


Define mutual inductance between two long coaxial solenoids. Find out the expression for the mutual inductance of inner solenoid of length having the radius r1 and the number of turns n1 per unit length due to the second outer solenoid of same length and r2 number of turns per unit length.


In what respect is a toroid different from a solenoid? 


How is the magnetic field inside a given solenoid made strong?


A circular coil of one turn of radius 5.0 cm is rotated about a diameter with a constant angular speed of 80 revolutions per minute. A uniform magnetic field B = 0.010 T exists in a direction perpendicular to the axis of rotation. Suppose the ends of the coil are connected to a resistance of 100 Ω. Neglecting the resistance of the coil, find the heat produced in the circuit in one minute.


The magnetic field B inside a long solenoid, carrying a current of 5.00 A, is 3.14 × 10−2 T. Find the number of turns per unit length of the solenoid. 


A long solenoid is fabricated by closely winding a wire of radius 0.5 mm over a cylindrical nonmagnetic frame so that the successive turns nearly touch each other. What would be the magnetic field B at the centre of the solenoid if it carries a current of 5 A? 


A current of 1.0 A is established in a tightly wound solenoid of radius 2 cm having 1000 turns/metre. Find the magnetic energy stored in each metre of the solenoid.


The length of a solenoid is 0.4 m and the number turns in it is 500. A current of 3 amp, is flowing in it. In a small coil of radius 0.01 m and number of turns 10, a current of 0.4 amp. is flowing. The torque necessary to keep the axis of this coil perpendicular to the axis of solenoid will be ______.


Magnetic field inside a solenoid is ______.

A long solenoid carrying a current produces a magnetic field B along its axis. If the current is doubled and the number of turns per cm is halved, the new value of magnetic field will be equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×