हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Totally Reflecting, Small Plane Mirror Placed Horizontally Faces a Parallel Beam of Light, as Shown in the Figure. the Mass of the Mirror is 20 G. - Physics

Advertisements
Advertisements

प्रश्न

A totally reflecting, small plane mirror placed horizontally faces a parallel beam of light, as shown in the figure. The mass of the mirror is 20 g. Assume that there is no absorption in the lens and that 30% of the light emitted by the source goes through the lens. Find the power of the source needed to support the weight of the mirror.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

योग

उत्तर

Given :-

Mass of the mirror, m = 20 g = 20 × 10−3 kg

The weight of the mirror will be balanced if the force exerted by the photons will be equal to the weight of the mirror.

Now,

Relation between wavelength `(λ)` and momentum (p) :-

`p = h/λ`

On divinding both sides by t , we get 

`P/t = h/(λt)...............(1)`

Energy,

`E = (hc)/λ`

⇒ `E/t = (hc)/(λt)`

Let P be the power. Then,

`P = E/t = (hc)/(λt)`

`P = (pc)/t ............ ["Using equation (1)"]`

⇒ `P/c = p/t`

Force , 

`F = P/t = P/c   ..............("Since F" = ("Momentum")/("Time"))`

Thus, rate of change of momentum = Power/c

As the light gets reflected normally,

Force exerted = 2 (Rate of change of momentum) = 2 × Power/c

`30% "of" ((2 xx "Power")/c) = "mg"`

`⇒ "Power" = (20 xx 10^-3 xx 10 xx 3 xx 10^8 xx 10)/(2 xx 3)= 100" MW"`

shaalaa.com
Experimental Study of Photoelectric Effect
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 8 | पृष्ठ ३६५

संबंधित प्रश्न

The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?


Light of intensity 10−5 W m−2 falls on a sodium photo-cell of surface area 2 cm2. Assuming that the top 5 layers of sodium absorb the incident energy, estimate time required for photoelectric emission in the wave-picture of radiation. The work function for the metal is given to be about 2 eV. What is the implication of your answer?


The threshold wavelength of a metal is λ0. Light of wavelength slightly less than λ0 is incident on an insulated plate made of this metal. It is found that photoelectrons are emitted for some time and after that the emission stops. Explain.


The equation E = pc is valid


Light of wavelength λ falls on a metal with work-function hc/λ0. Photoelectric effect will take place only if


If the frequency of light in a photoelectric experiment is doubled, the stopping potential will ______.


A point source causes photoelectric effect from a small metal plate. Which of the following curves may represent the saturation photocurrent as a function of the distance between the source and the metal?


When the sun is directly overhead, the surface of the earth receives 1.4 × 103 W m−2 of sunlight. Assume that the light is monochromatic with average wavelength 500 nm and that no light is absorbed in between the sun and the earth's surface. The distance between the sun and the earth is 1.5 × 1011 m. (a) Calculate the number of photons falling per second on each square metre of earth's surface directly below the sun. (b) How many photons are there in each cubic metre near the earth's surface at any instant? (c) How many photons does the sun emit per second?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


When a metal plate is exposed to a monochromatic beam of light of wavelength 400 nm, a negative potential of 1.1 V is needed to stop the photo current. Find the threshold wavelength for the metal.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a light wave is given by  `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.


The electric field associated with a light wave is given by `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A small piece of cesium metal (φ = 1.9 eV) is kept at a distance of 20 cm from a large metal plate with a charge density of 1.0 × 10−9 C m−2 on the surface facing the cesium piece. A monochromatic light of wavelength 400 nm is incident on the cesium piece. Find the minimum and maximum kinetic energy of the photoelectrons reaching the large metal plate. Neglect any change in electric field due to the small piece of cesium present.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The figure is the plot of stopping potential versus the frequency of the light used in an experiment on photoelectric effect. Find (a) the ratio h/e and (b) the work function.


On the basis of the graphs shown in the figure, answer the following questions :

(a) Which physical parameter is kept constant for the three curves?

(b) Which is the highest frequency among v1, v2, and v3?


In photoelectric effect the photo current ______.


Do all the electrons that absorb a photon come out as photoelectrons?


Consider a 20 W bulb emitting light of wavelength 5000 Å and shining on a metal surface kept at a distance 2 m. Assume that the metal surface has work function of 2 eV and that each atom on the metal surface can be treated as a circular disk of radius 1.5 Å.

  1. Estimate no. of photons emitted by the bulb per second. [Assume no other losses]
  2. Will there be photoelectric emission?
  3. How much time would be required by the atomic disk to receive energy equal to work function (2 eV)?
  4. How many photons would atomic disk receive within time duration calculated in (iii) above?
  5. Can you explain how photoelectric effect was observed instantaneously?

The figure shows a plot of stopping potential (V0) versus `1/lambda`, where λ is the wavelength of the radiation causing photoelectric emission from a surface. The slope of the line is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×