हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Transverse Wave of Amplitude 0⋅50 Mm and Frequency 100 Hz is Produced on a Wire Stretched to a Tension of - Physics

Advertisements
Advertisements

प्रश्न

A transverse wave of amplitude 0⋅50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N. If the wave speed is 100 m s−1, what average power is the source transmitting to the wire?

योग

उत्तर

Given,
Amplitude of the transverse wave, r = 0.5 mm
\[= 0 . 5 \times  {10}^{- 3}   m\]
Frequency, f = 100 Hz
Tension, T = 100 N
Wave speed, v = 100 m/s
Thus, we have:

\[\nu = \sqrt{\left( \frac{T}{m} \right)}\] 

\[ \Rightarrow  \nu^2  = \left( \frac{T}{m} \right)\] 

\[ \Rightarrow m = \frac{T}{\nu^2} = \frac{100}{\left( 100 \r = 0 . 01  kg/m\] 

Average  power  of  the  source: 

\[ P_{avg}  = 2 \pi^2 m\nu r^2  f^2 \] 

\[  = 2   \left( 3 . 14 \right)^2   \left( 0 . 01 \right) \times 100 \times  \left( 0 . 5 \times {10}^{- 3} \right)^2  \times \left( 100 \right)\] 

\[  = 2 \times 9 . 86 \times 0 . 25 \times  {10}^{- 6}  \times  {10}^4 \] 

\[ = 19 . 7 \times 0 . 0025 = 0 . 049  W\] 

\[ = 49 \times  {10}^{- 3}   W = 49  mW\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 15 Wave Motion and Waves on a String
Exercise | Q 28 | पृष्ठ ३२५

संबंधित प्रश्न

A wire of density ‘ρ’ and Young’s modulus ‘Y’ is stretched between two rigid supports separated by a distance ‘L’ under tension ‘T’. Derive an expression for its frequency in fundamental mode. Hence show that `n=1/(2L)sqrt((Yl)/(rhoL))` where symbols have their usual meanings


Explain why (or how) Solids can support both longitudinal and transverse waves, but only longitudinal waves can propagate in gases


Explain why (or how) The shape of a pulse gets distorted during propagation in a dispersive medium.


A transverse wave is produced on a stretched string 0.9 m long and fixed at its ends. Find the speed of the transverse wave, when the string vibrates while emitting the second overtone of frequency 324 Hz.


Longitudinal waves cannot


A wave going in a solid
(a) must be longitudinal
(b) may be longitudinal
(c) must be transverse
(d) may be transverse.


A wave moving in a gas


A particle on a stretched string supporting a travelling wave, takes 5⋅0 ms to move from its mean position to the extreme position. The distance between two consecutive particles, which are at their mean positions, is 2⋅0 cm. Find the frequency, the wavelength and the wave speed.


Figure shows a plot of the transverse displacements of the particles of a string at t = 0 through which a travelling wave is passing in the positive x-direction. The wave speed is 20 cm s−1. Find (a) the amplitude, (b) the wavelength, (c) the wave number and (d) the frequency of the wave.


A steel wire of length 64 cm weighs 5 g. If it is stretched by a force of 8 N, what would be the speed of a transverse wave passing on it?


A vertical rod is hit at one end. What kind of wave propagates in the rod if (a) the hit is made vertically (b) the hit is made horizontally?


Two wires of different densities but same area of cross section are soldered together at one end and are stretched to a tension T. The velocity of a transverse wave in the first wire is double of that in the second wire. Find the ratio of the density of the first wire to that of the second wire.


Consider the following statements about sound passing through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in time.


In the arrangement shown in figure  , the string has a mass of 4⋅5 g. How much time will it take for a transverse disturbance produced at the floor to reach the pulley? Take g = 10 m s−2.


A steel wire of mass 4⋅0 g and length 80 cm is fixed at the two ends. The tension in the wire is 50 N. Find the frequency and wavelength of the fourth harmonic of the fundamental.


The equation of a standing wave, produced on a string fixed at both ends, is
\[y = \left( 0 \cdot 4  cm \right)  \sin  \left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
What could be the smallest length of the string?


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

`"y" = 2sqrt(x - "vt")`


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×