हिंदी

Derive an Expression for Frequency in Fundamental Mode - Physics

Advertisements
Advertisements

प्रश्न

A wire of density ‘ρ’ and Young’s modulus ‘Y’ is stretched between two rigid supports separated by a distance ‘L’ under tension ‘T’. Derive an expression for its frequency in fundamental mode. Hence show that `n=1/(2L)sqrt((Yl)/(rhoL))` where symbols have their usual meanings

उत्तर

onsider a string of lenght ‘L’. Let ‘m’ be the mass per unit length of the stirng ‘T’ be tension in the string.

If transveres wave is produced in the string, the velocity of the wave is given by `v=sqrtT/m""....(1)`

If the string is plucked in middle, two incident and reflected wave will produce stationary wave. The string will vibrate in different mode which is called mode of vibrations.

The simplest mode of vibration is as shown in figure, which is called fundamental mode of vibration. Here two nodes and one antinode is formed. Let λ and n be corresponding wavelength and frequency

∴ L=λ/2    ∴λ=2L     ∴v=nλ=n2L

`:."From equation (i)"n(2L)=sqrt(T/m)`

`:.n=1/(2L)sqrt(T/m)" ....(2)"`

This is called fundamental frequency

Young’s modulus 

`Y=(TL)/(Al)`

`T=(YAl)/L, m=M/L=(Vrho)/L`

`=(ALrho)/L=Arho`

`:."from equation (2) "n=1/(2L)sqrt(((YAl)/L)/(Arho))`

`n=1/(2L)sqrt((Yl)/(AL))`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

When longitudinal wave is incident at the boundary of denser medium, then............................

  1. compression reflects as a compression.
  2. compression reflects as a rarefaction.
  3. rarefaction reflects as a compression.
  4. longitudinal wave reflects as transverse wave.

A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36 t + 0.018 x + π/4) 

Where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave?

If it is travelling, what are the speed and direction of its propagation?

(b) What are its amplitude and frequency?

(c) What is the initial phase at the origin?

(d) What is the least distance between two successive crests in the wave?


A transverse wave is produced on a stretched string 0.9 m long and fixed at its ends. Find the speed of the transverse wave, when the string vibrates while emitting the second overtone of frequency 324 Hz.


You are walking along a seashore and a mild wind is blowing. Is the motion of air a wave motion?


Longitudinal waves cannot


A wave moving in a gas


Figure shows a plot of the transverse displacements of the particles of a string at t = 0 through which a travelling wave is passing in the positive x-direction. The wave speed is 20 cm s−1. Find (a) the amplitude, (b) the wavelength, (c) the wave number and (d) the frequency of the wave.


A steel wire of length 64 cm weighs 5 g. If it is stretched by a force of 8 N, what would be the speed of a transverse wave passing on it?


A vertical rod is hit at one end. What kind of wave propagates in the rod if (a) the hit is made vertically (b) the hit is made horizontally?


Two wires of different densities but same area of cross section are soldered together at one end and are stretched to a tension T. The velocity of a transverse wave in the first wire is double of that in the second wire. Find the ratio of the density of the first wire to that of the second wire.


Consider the following statements about sound passing through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in time.


An organ pipe, open at both ends, contains


A heavy but uniform rope of length L is suspended from a ceiling. (a) Write the velocity of a transverse wave travelling on the string as a function of the distance from the lower end. (b) If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling? (c) A particle is dropped from the ceiling at the instant the bottom end is given the jerk. Where will the particle meet the pulse?


A transverse wave of amplitude 0⋅50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N. If the wave speed is 100 m s−1, what average power is the source transmitting to the wire?


A tuning fork of frequency 440 Hz is attached to a long string of linear mass density 0⋅01 kg m−1 kept under a tension of 49 N. The fork produces transverse waves of amplitude 0⋅50 mm on the string. (a) Find the wave speed and the wavelength of the waves. (b) Find the maximum speed and acceleration of a particle of the string. (c) At what average rate is the tuning fork transmitting energy to the string?


If the speed of a transverse wave on a stretched string of length 1 m is 60 m−1, what is the fundamental frequency of vibration?


A steel wire of mass 4⋅0 g and length 80 cm is fixed at the two ends. The tension in the wire is 50 N. Find the frequency and wavelength of the fourth harmonic of the fundamental.


A wire, fixed at both ends is seen to vibrate at a resonant frequency of 240 Hz and also at 320 Hz. (a) What could be the maximum value of the fundamental frequency? (b) If transverse waves can travel on this string at a speed of 40 m s−1, what is its length?


Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies? (c) Which overtones are these frequencies? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string?


The equation of a standing wave, produced on a string fixed at both ends, is
\[y = \left( 0 \cdot 4  cm \right)  \sin  \left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
What could be the smallest length of the string?


The phenomenon of beats can take place


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

`"y" = 2sqrt(x - "vt")`


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×