Advertisements
Advertisements
प्रश्न
आकृति में m∠C ज्ञात कीजिए जदि `overline("AB") || overline("DC")` है।
उत्तर
दिया गया है `overline("AB") || overline("DC")`
अत: ∠B + ∠C = 180°
या 120° +m∠C = 180°
∠C= 180° - 120° = 60
या m∠C = 60°
APPEARS IN
संबंधित प्रश्न
बताइए कैसे यह आकृति एक समलंब है। इसकी कौन सी दो भुजाएँ समांतर हैं?
सभी समांतर चतुर्भुज समलंब होते है।
निम्न में से कौन-सी आकृति नीचे लिखे गुण को संतुष्ट करती है?
“भुजाओं का केवल एक युग्म समांतर है।”
निम्नलिखित गुणों में से किस एक के द्वारा एक समलंब की व्याख्या होती है?
PQRS एक समलंब है, जिसमें PQ || SR है तथा ∠P = 130∘ और ∠Q = 110∘ है। तब ∠R बराबर है –
प्रत्येक समलंब एक समांतर चतुर्भुज है।
चार चतुर्भुजों - वर्ग, आयत, समचतुर्भुज और समलंब में से एक अन्य तीन से अपने डिजाइन के कारण कुछ भिन्न हैं। उसे ज्ञात कीजिए और उसका औचित्य दीजिए।
समलंब HARE में, EP और RP क्रमश: ∠E और ∠R के समद्विभाजक हैं। ∠HAR और ∠EHA ज्ञात कीजिए।
नीचे दिये गये समलंब ABCD में, x का मान ज्ञात कीजिए –
एक समलंब ABCD की रचना कीजिए, जिसमें AB || CD, AD = BC = 3.2 cm, AB = 6.4 cm और CD = 9.6 cm है। ∠B और ∠A को मापिए।
[सिंकेत – दोनों समांतर भुजाओं के अंतर से एक समबाहु त्रिभुज की भुजा प्राप्त होती है।]