हिंदी

ABC is a right triangle with angle B = 90º. A circle with BC as diameter meets by hypotenuse AC at point D. Prove that: BD2 = AD × DC. - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is a right triangle with angle B = 90º. A circle with BC as diameter meets by hypotenuse AC at point D. Prove that: BD2 = AD × DC.

योग

उत्तर


In ΔADB,

∠D = 90°

∴ ∠A + ∠ABD = 90° ...(i)

But in ΔABC, ∠B = 90°

∴ ∠A + ∠C = 90°   ...(ii)

From (i) and (ii)

∠C = ∠ABD

Now in ΔABD and ΔCBD

∠BDA = ∠BDA = 90°

∠ABD = ∠BCD

∴ ΔABD ∼ ΔCBD  ...(AA postulate)

∴ `(BD)/(DC) = (AD)/(BD)`

`=>` BD2 = AD × DC

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८६]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 17.2 | पृष्ठ २८६

वीडियो ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×